Spectral aspects of commuting conjugacy class graph of finite groups

Document Type : Research Paper

Authors

1 Department of Mathematical Sciences, Tezpur university, Napaam Assam, India.

2 Department of Mathematical Sciences, Tezpur University, Sonitpur, India

10.29252/as.2021.1979

Abstract

The commuting conjugacy class graph of a non-abelian group $G$, denoted by $\mathcal{CCC}(G)$, is a simple undirected graph whose vertex set is the set of conjugacy classes of the non-central elements of $G$ and two distinct vertices $x^G$ and $y^G$ are adjacent if there exists some elements $x' \in x^G$ and $y' \in y^G$ such that $x'y' = y'x'$. In this paper we compute various spectra and energies of commuting conjugacy class graph of the groups $D_{2n}, Q_{4m}, U_{(n, m)}, V_{8n}$ and $SD_{8n}$. Our computation shows that $\mathcal{CCC}(G)$ is super integral for these groups. We compare various energies and as a consequence it is observed that $\mathcal{CCC}(G)$ satisfy E-LE Conjecture of Gutman et al. We also provide negative answer to a question posed by Dutta et al. comparing Laplacian and Signless Laplacian energy. Finally, we conclude this paper by characterizing the above mentioned groups $G$ such that $\mathcal{CCC}(G)$ is hyperenergetic, L-hyperenergetic or Q-hyperenergetic.

Keywords


[1] N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonif_acioa and I. Gutman, The Laplacian energy of some Laplacian integral graph, MATCH Commun. Math. Comput. Chem., 60 (2008) 447-460.
[2] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić and D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2003) 42-65.
[3] R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math., 62 No. 2 (1955) 565-583.
[4] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl., 423 (2007) 155-171.
[5] P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite nonabelian groups, Khayyam J. Math., 6 No. 1 (2020) 27-45.
[6] J. Dutta and R. K. Nath, Spectrum of commuting graphs of some classes of finite groups, Matematika, 33 No. 1 (2017) 87-95.
[7] J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, Mat. Vesnik, 69 No. 3 (2017) 226-230.
[8] J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, Khayyam J. Math., 4 No. 1 (2018) 77-87.
[9] W. N. T. Fasfous, R. K. Nath and R. Sharafdini, Various spectra and energies of commuting graphs of finite rings, Hacet. J. Math. Stat., 49 No. 6 (2020) 1915-1925.
[10] S.C. Gong, X. Li, G.H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 74 (2015) 321-332.
[11] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc., 64 (1999) 199-205.
[12] I. Gutman, N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifácioa and S. Radosavljević, Relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem., 59 (2008) 343-354.
[13] F. Harary and A. J. Schwenk, Which graphs have integral spectra?, Graphs and Combin., Lect. Notes Math., 406 (1974), Springer-Verlag, Berlin, 45-51.
[14] M. Herzog, M. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups. Comm. Algebra, 37 No. 10 (2009) 3369-3387.
[15] S. Kirkland, Constructably Laplacian integral graphs, Linear Algebra Appl., 423 (2007) 3-21.
[16] J. Liu, and B. Liu, On the relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem., 61 (2009) 403-406.
[17] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199 (1994) 381-389.
[18] A. Mohammadian, A. Erfanian, D. G. M. Farrokhi and B. Wilkens, Triangle-free commuting conjugacy class graphs. J. Group Theory, 19 (2016) 1049-1061.
[19] R. K. Nath, Various spectra of commuting graphs n-centralizer finite groups, International Journal of Engineering Science and Technology, accepted for publication.
[20] M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graph of finite CA-groups, Khayyam J. Math., 6 No. 1 (2020) 108-118.
[21] S. K. Simić and Z. Stanić, Q-integral graphs with edge-degrees at most five, Discrete Math., 308 (2008) 4625-4634.
[22] D. Stevanović, I. Stanković, and M. Milošević, More on the relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem., 61 (2008) 395-401.
[23] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 77 (2017) 37-44.
[24] H.B. Walikar, H.S. Ramane and P.R. Hampiholi, On the energy of a graph, Graph Connections, Allied Publishers, New Delhi, 1999, pp. 120-123, Eds. R. Balakrishnan, H. M. Mulder, A. Vijayakumar.