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1. Introduction

The commuting graph of a finite non-abelian group G with center Z(G) is a simple undi-
rected graph whose vertex set is G \ Z(G) and two distinct vertices x and y are adjacent if
xy = yx. This graph was first considered by Brauer and Fowler [3]. Later on, many mathemati-
cians have extended this graph by considering nilpotent graphs, solvable graphs, commuting
conjugacy class graphs etc. The commuting conjugacy class graph of a non-abelian group G,
denoted by CCC(G), is a simple undirected graph whose vertex set is the set of conjugacy
classes of the non-central elements of G and two distinct vertices xG and yG are adjacent if
there exists some elements x′ ∈ xG and y′ ∈ yG such that x′y′ = y′x′. The notion of commut-
ing conjugacy class graph of groups was introduced by Herzog, Longobardi and Maj [14] in
the year 2009. However, in their definition of CCC(G), the vertex set is considered to be the
set of all non-identity conjugacy classes of G. In the year 2016, Mohammadian et al. [18] have
classified all finite groups such that CCC(G) is triangle-free. Recently, in [20], Salahshour and
Ashrafi have obtain the structure of CCC(G) considering G to be the following groups:

D2n = ⟨x, y : xn = y2 = 1, yxy = x−1⟩ for n ≥ 3,

Q4m = ⟨x, y : x2m = 1, xm = y2, y−1xy = x−1⟩ for m ≥ 2,

U(n,m) = ⟨x, y : x2n = ym = 1, x−1yx = y−1⟩ for m ≥ 2 and n ≥ 2,

V8n = ⟨x, y : x2n = y4 = 1, yx = x−1y−1, y−1x = x−1y⟩ for n ≥ 2,

SD8n = ⟨x, y : x4n = y2 = 1, yxy = x2n−1⟩ for n ≥ 2 and

G(p,m, n) = ⟨x, y : xp
m
= yp

n
= [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1⟩,

where p is any prime, m ≥ 1 and n ≥ 1.
In this paper we compute various spectra and energies of commuting conjugacy class graph

of the first five groups listed above due to the similar nature of their commuting conjugacy
class graphs. In a subsequent paper we shall consider commuting conjugacy class graph of
G(p,m, n). Computation of various spectra is helpful to check whether CCC(G) is super inte-
gral. Recall that a graph G is called super integral if it is integral, L-integral and Q-integral.
In the year 1974, Harary and Schwenk [13] introduced the concept of integral graphs. Several
results on these graphs can be found in [1, 2, 4, 15, 17, 21]. It is observed that CCC(G) is
super integral for the groups mentioned above. In Section 4, using the energies computed
in Section 3, we determine whether the inequalities in [5, Conjecture 1] and [5, Question 1]
satisfy for CCC(G). In Section 5, we determine whether CCC(G) is hyperenergetic, borderener-
getic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic or Q-borderenergetic. It is worth
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mentioning that various spectra and energies of commuting graphs of finite groups have been
computed in [6, 7, 19, 8, 5].

2. Definitions and useful results

Let A(G) and D(G) denote the adjacency matrix and degree matrix of a graph G respectively.
Then the Laplacian matrix and Signless Laplacian matrix of G are given by L(G) = D(G)−A(G)
and Q(G) = D(G) +A(G) respectively. We write Spec(G), L-spec(G) and Q-spec(G) to denote
the spectrum, Laplacian spectrum and Signless Laplacian spectrum of G. Also, Spec(G) =

{αa1
1 , αa2

2 , . . . , αal
l }, L-spec(G) = {βb1

1 , βb2
2 , . . . , βbm

m } and Q-spec(G) = {γc11 , γc22 , . . . , γcnn } where
α1, α2, . . . , αn are the eigenvalues of A(G) with multiplicities a1, a2, . . . , al; β1, β2, . . . , βm are
the eigenvalues of L(G) with multiplicities b1, b2, . . . , bm and γ1, γ2, . . . , γn are the eigenvalues
of Q(G) with multiplicities c1, c2, . . . , cn respectively. A graph G is called integral or L-integral
or Q-integral according as Spec(G) or L-spec(G) or Q-spec(G) contains only integers. Following
theorem is helpful in computing various spectra.

Theorem 2.1. If G = l1Km1 ⊔ l2Km2, where liKmi denotes the disjoint union of li copies of
the complete graph Kmi on mi vertices for i = 1, 2, then

Spec(G) =
{
(−1)

∑2
i=1 li(mi−1), (m1 − 1)l1 , (m2 − 1)l2

}
L-spec(G) =

{
0l1+l2 ,m

l1(m1−1)
1 ,m

l2(m2−1)
2

}
and

Q-spec(G) =
{
(2m1 − 2)l1 , (m1 − 2)l1(m1−1), (2m2 − 2)l2 , (m2 − 2)l2(m2−1)

}
.

Depending on the various spectra of a graph, there are various energies called energy, Lapla-
cian energy and Signless Laplacian energy denoted by E(G), LE(G) and LE+(G) respectively.
These energies are defined as follows:

(1) E(G) =
∑

λ∈Spec(G)

|λ|,

(2) LE(G) =
∑

µ∈L-spec(G)

∣∣∣∣µ− 2|e(Γ)|
|V (Γ)|

∣∣∣∣ ,

(3) LE+(G) =
∑

ν∈Q-spec(G)

∣∣∣∣ν − 2|e(Γ)|
|V (G)|

∣∣∣∣ ,
where V (G) and e(G) denote the sets of vertices and edges of Γ.

In 2008, Gutman et al. [12] posed the following conjecture comparing E(G) and LE(G).

Conjecture 2.2. (E-LE Conjecture) E(G) ≤ LE(G) for any graph G.
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However, in the same year, Stevanović et al. [22] disproved the above conjecture. In 2009,
Liu and Lin [16] also disproved Conjecture 2.2 by providing some counter examples. Following
Gutman et al. [12], recently Dutta et al. have posed the following question in [5] comparing
Laplacian and singless Laplacian energies of graphs.

Question 2.3. Is LE(G) ≤ LE+(G) for all graphs G?

3. Various spectra and energies

In this section we compute various spectra and energies of commuting conjugacy class graphs
of the groups mentioned in the introduction.

Theorem 3.1. If G = D2n then

(i) Spec(CCC(G)) =



{
(−1)

n−3
2 , 01,

(
n−3
2

)1}
, if n is odd{

(−1)
n
2
−2, 02,

(
n
2 − 2

)1}
, if n and n

2 are even{
(−1)

n
2
−1, 11,

(
n
2 − 2

)1}
, if n is even and n

2 is odd

and E(CCC(G)) =


n− 3, if n is odd

n− 4, if n and n
2 are even

n− 2, if n is even and n
2 is odd.

(ii) L-spec(CCC(G)) =



{
02,

(
n−1
2

)n−3
2

}
, if n is odd{

03,
(
n
2 − 1

)n
2
−2

}
, if n and n

2 are even{
02, 21,

(
n
2 − 1

)n
2
−2

}
, if n is even and n

2 is odd

and LE(CCC(G)) =



2(n−1)(n−3)
n+1 , if n is odd

3(n−2)(n−4)
n+2 , if n and n

2 are even

4, if n = 6

(n−4)(3n−10)
n+2 , if n is even, n ≥ 10 and n

2 is odd.

(iii) Q-spec(CCC(G)) =



{
01, (n− 3)1,

(
n−5
2

)n−3
2

}
, if n is odd{

02, (n− 4)1,
(
n
2 − 3

)n
2
−2

}
, if n and n

2 are even{
21, 01, (n− 4)1,

(
n
2 − 3

)n
2
−2

}
, if n is even and n

2 is odd



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 67-118. 71

and LE+(CCC(G)) =



(n−3)(n+3)
n+1 , if n is odd

(n−4)(n+6)
n+2 , if n = 4, 8

2(n−2)(n−4)
n+2 , if n, n2 are even and n ≥ 12

4, if n = 6

22
3 , if n = 10

2(n−2)(n−6)
n+2 , if n is even, n ≥ 14 and n

2 is odd.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By [20, Proposition 2.1] we have CCC(G) = K1 ⊔ Kn−1
2

. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =

{
(−1)

n−3
2 , 01,

(
n− 3

2

)1
}
, L-spec(CCC(G)) =

{
02,

(
n− 1

2

)n−3
2

}

and Q-spec(CCC(G)) =

{
01, (n− 3)1,

(
n− 5

2

)n−3
2

}
.

Hence, by (1), we get
E(CCC(G)) =

n− 3

2
+

n− 3

2
= n− 3.

We have |V (CCC(G))| = n+1
2 and |e(CCC(G))| = (n−1)(n−3)

8 . Therefore, 2|e(CCC(G))|
|V (CCC(G))| =

(n−1)(n−3)
2(n+1) . Also,∣∣∣∣0− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (n− 1)(n− 3)

2(n+ 1)

∣∣∣∣ = (n− 1)(n− 3)

2(n+ 1)
and∣∣∣∣n− 1

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 1

2
− (n− 1)(n− 3)

2(n+ 1)

∣∣∣∣ = 2(n− 1)

n+ 1
.

Now, by (2), we have

LE(CCC(G)) = 2× (n− 1)(n− 3)

2(n+ 1)
+

n− 3

2
× 2(n− 1)

n+ 1
=

2(n− 1)(n− 3)

n+ 1
.

Again,∣∣∣∣n− 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 3− (n− 1)(n− 3)

2(n+ 1)

∣∣∣∣ = (n− 3)(n+ 3)

2(n+ 1)
and∣∣∣∣n− 5

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 5

2
− (n− 1)(n− 3)

2(n+ 1)

∣∣∣∣ = ∣∣∣∣ −4

n+ 1

∣∣∣∣ = 4

n+ 1
.

By (3), we have

LE+(CCC(G)) =
(n− 1)(n− 3)

2(n+ 1)
+

(n− 3)(n+ 3)

2(n+ 1)
+

n− 3

2
× 4

n+ 1
=

(n− 3)(n+ 3)

n+ 1
.

Case 2. n is even.



72 P. Bhowal and R. K. Nath

Consider the following subcases.
Subcase 2.1 n

2 is even.
By [20, Proposition 2.1] we have CCC(G) = 2K1 ⊔ Kn

2
−1. Therefore, by Theorem 2.1, it

follows that

Spec(CCC(G)) =

{
(−1)

n
2
−2, 02,

(n
2
− 2

)1
}
, L-spec(CCC(G)) =

{
03,

(n
2
− 1

)n
2
−2

}
and Q-spec(CCC(G)) =

{
02, (n− 4)1,

(n
2
− 3

)n
2
−2

}
.

Hence, by (1), we get
E(CCC(G)) =

n

2
− 2 +

n

2
− 2 = n− 4.

We have |V (CCC(G))| = n
2 + 1 and |e(CCC(G))| = (n−2)(n−4)

8 . So, 2|e(CCC(G))|
|V (CCC(G))| =

(n−2)(n−4)
2(n+2) .

Also, ∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (n− 2)(n− 4)

2(n+ 2)

∣∣∣∣ = (n− 2)(n− 4)

2(n+ 2)
and∣∣∣∣n2 − 1− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n2 − 1− (n− 2)(n− 4)

2(n+ 2)

∣∣∣∣ = 3(n− 2)

n+ 2
.

Now, by (2), we have

LE(CCC(G)) = 3× (n− 2)(n− 4)

2(n+ 2)
+
(n
2
− 2

)
× 3(n− 2)

n+ 2
=

3(n− 2)(n− 4)

n+ 2
.

Again,∣∣∣∣n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 4− (n− 2)(n− 4)

2(n+ 2)

∣∣∣∣ = (n− 4)(n+ 6)

2(n+ 2)
and

∣∣∣∣n2 − 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n2 − 3− (n− 2)(n− 4)

2(n+ 2)

∣∣∣∣ = ∣∣∣∣n− 10

n+ 2

∣∣∣∣ =


−n+10
n+2 , if n = 4, 8

n−10
n+2 , if n ≥ 12.

By (3), we have

LE+(CCC(G)) = 2× (n− 2)(n− 4)

2(n+ 2)
+

(n− 4)(n+ 6)

2(n+ 2)
+
(n
2
− 2

)
× −n+ 10

n+ 2
=

(n− 4)(n+ 6)

n+ 2
,

if n = 4, 8. If n ≥ 12 then

LE+(CCC(G)) = 2× (n− 2)(n− 4)

2(n+ 2)
+

(n− 4)(n+ 6)

2(n+ 2)
+
(n
2
− 2

)
× n− 10

n+ 2
=

2(n− 2)(n− 4)

n+ 2
.

Subcase 2.2 n
2 is odd.

By [20, Proposition 2.1] we have CCC(G) = K2 ⊔ Kn
2
−1. Therefore, by Theorem 2.1, it

follows that

Spec(CCC(G)) =

{
(−1)

n
2
−1, 11,

(n
2
− 2

)1
}
, L-spec(CCC(G)) =

{
02, 21,

(n
2
− 1

)n
2
−2

}
and Q-spec(CCC(G)) =

{
21, 01, (n− 4)1,

(n
2
− 3

)n
2
−2

}
.
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Hence, by (1), we get

E(CCC(G)) =
n

2
− 1 + 1 +

n

2
− 2 = n− 2.

We have |V (CCC(G))| = n
2 + 1 and |e(CCC(G))| = (n−2)(n−4)+8

8 . Therefore, 2|e(CCC(G))|
|V (CCC(G))| =

(n−2)(n−4)+8
2(n+2) . Also,∣∣∣∣0− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (n− 2)(n− 4) + 8

2(n+ 2)

∣∣∣∣ = (n− 2)(n− 4) + 8

2(n+ 2)
,

∣∣∣∣2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2− (n− 2)(n− 4) + 8

2(n+ 2)

∣∣∣∣
=

∣∣∣∣−n2 + 10n− 8

2(n+ 2)

∣∣∣∣ =
1, if n = 6

n2−10n+8
2(n+2) , if n ≥ 10

and ∣∣∣∣n2 − 1− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n2 − 1− (n− 2)(n− 4) + 8

2(n+ 2)

∣∣∣∣ = 3n− 10

n+ 2
.

Now, by (2), we have

LE(CCC(G)) = 2× (n− 2)(n− 4) + 8

2(n+ 2)
+ 1 +

(n
2
− 2

)
× 3n− 10

n+ 2
= 4,

if n = 6. If n ≥ 10 then

LE(CCC(G)) = 2× (n− 2)(n− 4) + 8

2(n+ 2)
+

n2 − 10n+ 8

2(n+ 2)
+
(n
2
− 2

)
× 3n− 10

n+ 2

=
3n2 − 22n− 40

n+ 2
=

(n− 4)(3n− 10)

n+ 2
.

Again,∣∣∣∣n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 4− (n− 2)(n− 4) + 8

2(n+ 2)

∣∣∣∣ = n2 + 2n− 32

2(n+ 2)
and

∣∣∣∣n2 − 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n2 − 3− (n− 2)(n− 4) + 8

2(n+ 2)

∣∣∣∣
=

∣∣∣∣n− 14

n+ 2

∣∣∣∣ =


−n+14
n+2 , if n = 6, 10

n−14
n+2 , if n ≥ 14.

By (3), we have

LE+(CCC(G)) = 1 +
(n− 2)(n− 4) + 8

2(n+ 2)
+

n2 + 2n− 32

2(n+ 2)
+
(n
2
− 2

)
× −n+ 14

n+ 2
= 4,
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if n = 6. If n = 10 then

LE+(CCC(G)) =
n2 − 10n+ 8

2(n+ 2)
+

(n− 2)(n− 4) + 8

2(n+ 2)
+

n2 + 2n− 32

2(n+ 2)
+
(n
2
− 2

)
× −n+ 14

n+ 2

=
22

3
.

If n ≥ 14 then

LE+(CCC(G)) =
n2 − 10n+ 8

2(n+ 2)
+

(n− 2)(n− 4) + 8

2(n+ 2)
+

n2 + 2n− 32

2(n+ 2)
+
(n
2
− 2

)
× n− 14

n+ 2

=
2(n− 2)(n− 6)

n+ 2
.

This completes the proof.

Theorem 3.2. If G = Q4m then

(i) Spec(CCC(G)) =


{
(−1)m−1, 11, (m− 2)1

}
, if m is odd{

(−1)m−2, 02, (m− 2)1
}
, if m is even

and E(CCC(G)) =

2m− 2, if m is odd

2m− 4, if m is even.

(ii) L-spec(CCC(G)) =


{
02, 21, (m− 1)m−2

}
, if m is odd{

03, (m− 1)m−2
}
, if m is even

and LE(CCC(G)) =


4, if m = 3

2(m−2)(3m−5)
m+1 , if m is odd and m ≥ 5

6(m−1)(m−2)
m+1 , if m is even.

(iii) Q-spec(CCC(G)) =


{
21, 01, (2m− 4)1, (m− 3)m−2

}
, if m is odd{

02, (2m− 4)1, (m− 3)m−2
}
, if m is even.

and LE+(CCC(G)) =



4, if m = 3

22
3 , if m = 5

4(m−1)(m−3)
m+1 , if m is odd and m ≥ 7

2(m−2)(m+3)
m+1 , if m = 2, 4

4(m−1)(m−2)
m+1 , if m is even and m ≥ 6.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
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By [20, Proposition 2.2] we have CCC(G) = K2 ⊔ Km−1. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =
{
(−1)m−1, 11, (m− 2)1

}
, L-spec(CCC(G)) =

{
02, 21, (m− 1)m−2

}
and Q-spec(CCC(G)) =

{
21, 01, (2m− 4)1, (m− 3)m−2

}
.

Hence, by (1), we get

E(CCC(G)) = m− 1 + 1 +m− 2 = 2m− 2.

We have |V (CCC(G))| = m + 1 and |e(CCC(G))| = (m−1)(m−2)+2
2 . Therefore, 2|e(CCC(G))|

|V (CCC(G))| =
(m−1)(m−2)+2

m+1 . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (m− 1)(m− 2) + 2

m+ 1

∣∣∣∣ = (m− 1)(m− 2) + 2

m+ 1
,

∣∣∣∣2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2− (m− 1)(m− 2) + 2

m+ 1

∣∣∣∣
=

∣∣∣∣−m2 + 5m− 2

m+ 1

∣∣∣∣ =
1, if m = 3

m2−5m+2
m+1 , if m ≥ 5

and

∣∣∣∣m− 1− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣m− 1− (m− 1)(m− 2) + 2

m+ 1

∣∣∣∣ = 3m− 5

m+ 1
.

Now, by (2), we have

LE(CCC(G)) = 2× (m− 1)(m− 2) + 2

m+ 1
+ 1 + (m− 2)× 3m− 5

m+ 1
= 4,

if m = 3. If m ≥ 5 then

LE(CCC(G)) = 2× (m− 1)(m− 2) + 2

m+ 1
+

m2 − 5m+ 2

m+ 1
+ (m− 2)× 3m− 5

m+ 1

=
2(m− 2)(3m− 5)

m+ 1
.

Again, ∣∣∣∣2m− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2m− 4− (m− 1)(m− 2) + 2

m+ 1

∣∣∣∣ = m2 +m− 8

m+ 1

and
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∣∣∣∣m− 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣m− 3− (m− 1)(m− 2) + 2

m+ 1

∣∣∣∣
=

∣∣∣∣m− 7

m+ 1

∣∣∣∣ =


−m+7
m+1 , if m = 3, 5

m−7
m+1 , if m ≥ 7.

By (3), we have

LE+(CCC(G)) = 1 +
(m− 1)(m− 2) + 2

m+ 1
+

m2 +m− 8

m+ 1
+ (m− 2)× −m+ 7

m+ 1
= 4,

if m = 3. If m = 5 then

LE+(CCC(G)) =
m2 − 5m+ 2

m+ 1
+

(m− 1)(m− 2) + 2

m+ 1
+

m2 +m− 8

m+ 1
+ (m− 2)× −m+ 7

m+ 1

=
22

3
.

If m ≥ 7 then

LE+(CCC(G)) =
m2 − 5m+ 2

m+ 1
+

(m− 1)(m− 2) + 2

m+ 1
+

m2 +m− 8

m+ 1
+ (m− 2)× m− 7

m+ 1

=
4(m− 1)(m− 3)

m+ 1
.

Case 2. m is even.
By [20, Proposition 2.2] we have CCC(G) = 2K1 ⊔ Km−1. Therefore, by Theorem 2.1, it

follows that

Spec(CCC(G)) =
{
(−1)m−2, 02, (m− 2)1

}
, L-spec(CCC(G)) =

{
03, (m− 1)m−2

}
and Q-spec(CCC(G)) =

{
02, (2m− 4)1, (m− 3)m−2

}
.

Hence, by (1), we get
E(CCC(G)) = m− 2 +m− 2 = 2m− 4.

We have |V (CCC(G))| = m + 1 and |e(CCC(G))| = (m−1)(m−2)
2 . Therefore, 2|e(CCC(G))|

|V (CCC(G))| =
(m−1)(m−2)

m+1 . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (m− 1)(m− 2)

m+ 1

∣∣∣∣ = (m− 1)(m− 2)

m+ 1

and

∣∣∣∣m− 1− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣m− 1− (m− 1)(m− 2)

m+ 1

∣∣∣∣ = 3(m− 1)

m+ 1
.

Now, by (2), we have

LE(CCC(G)) = 3× (m− 1)(m− 2)

m+ 1
+ (m− 2)× 3(m− 1)

m+ 1
=

6(m− 1)(m− 2)

m+ 1
.
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Again, ∣∣∣∣2m− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2m− 4− (m− 1)(m− 2)

m+ 1

∣∣∣∣ = (m− 2)(m+ 3)

m+ 1

and

∣∣∣∣m− 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣m− 3− (m− 1)(m− 2)

m+ 1

∣∣∣∣ = ∣∣∣∣m− 5

m+ 1

∣∣∣∣ =


−m+5
m+1 , if m = 2, 4

m−5
m+1 , if m ≥ 6.

By (3), we have

LE+(CCC(G)) = 2× (m− 1)(m− 2)

m+ 1
+

(m− 2)(m+ 3)

m+ 1
+ (m− 2)× −m+ 5

m+ 1

=
2(m− 2)(m+ 3)

m+ 1
,

if m = 2, 4. If m ≥ 6 then

LE+(CCC(G)) = 2× (m− 1)(m− 2)

m+ 1
+

(m− 2)(m+ 3)

m+ 1
+ (m− 2)× m− 5

m+ 1

=
4(m− 1)(m− 2)

m+ 1
.

This completes the proof.

Theorem 3.3. If G = U(n,m) then
(i) Spec(CCC(G)) =


{
(−1)

n(m+1)−4
2 ,

(
n(m−1)−2

2

)1
, (n− 1)1

}
, if m is odd and n ≥ 2{

(−1)
n(m+2)−6

2 ,
(
n(m−2)−2

2

)1
, (n− 1)2

}
, if m is even and n ≥ 2

and

E(CCC(G)) =


n(m+ 1)− 4, if m is odd and n ≥ 2

4(n− 1), if m = 2 and n ≥ 2

n(m+ 2)− 6, if m is even, m ≥ 4 and n ≥ 2.

(ii) L-spec(CCC(G)) =



{
02,

(
n(m−1)

2

)n(m−1)−2
2

, nn−1

}
, if m is odd and n ≥ 2{

03,
(
n(m−2)

2

)n(m−2)−2
2

, n2n−2

}
, if m is even and n ≥ 2

and
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LE(CCC(G)) =



4(n− 1), if m = 3 and n ≥ 2

2(2n−1)(n+3)
3 , if m = 5 and n ≥ 2

m2n2−4mn2+m2n+3n2−2mn−2m+5n−2
m+1 , if m is odd, m ≥ 7

and n ≥ 2

4(n− 1), if m = 2 and n ≥ 2

6(n− 1), if m = 4 and n ≥ 2

2m2n2−12mn2+m2n+16n2−4mn−2m+12n−4
m+2 , if m is even, m ≥ 6

and n ≥ 2.

(iii) Q-spec(CCC(G))

=



{
(n(m− 1)− 2)1,

(
n(m−1)−4

2

)n(m−1)−2
2

, (2n− 2)1, (n− 2)n−1

}
,

if m is odd and n ≥ 2{
(n(m− 2)− 2)1,

(
n(m−2)−4

2

)n(m−2)−2
2

, (2n− 2)2, (n− 2)2n−2

}
,

if m is even and n ≥ 2

and LE+(CCC(G)) =



4(n− 1), if m = 3 and n ≥ 2

22
3 , if m = 5 and n = 2

2(2n+3)(n−1)
3 , if m = 5 and n ≥ 3

n2(m−1)(m−3)
m+1 , if m is odd, m ≥ 7 and n ≥ 2

4(n− 1), if m = 2 and n ≥ 2

6(n− 1), if m = 4 and n ≥ 2

2(n+ 2)(n− 1), if m = 6 and n ≥ 2

2n2(m−2)(m−4)
m+2 , if m is even, m ≥ 8 and n ≥ 2.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
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By [20, Proposition 2.3] we have CCC(G) = Kn(m−1)
2

⊔ Kn. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =

{
(−1)

n(m+1)−4
2 ,

(
n(m− 1)− 2

2

)1

, (n− 1)1

}
,

L-spec(CCC(G)) =

02,

(
n(m− 1)

2

)n(m−1)−2
2

, nn−1


and Q-spec(CCC(G)) =

(n(m− 1)− 2)1,

(
n(m− 1)− 4

2

)n(m−1)−2
2

, (2n− 2)1, (n− 2)n−1

 .

Hence, by (1), we get

E(CCC(G)) =
n(m+ 1)− 4

2
+

n(m− 1)− 2

2
+ n− 1 = n(m+ 1)− 4.

We have |V (CCC(G))| = n(m+1)
2 and |e(CCC(G))| = n2(m−1)2−2n(m−2n+1)

8 . Therefore,
2|e(CCC(G))|
|V (CCC(G))| = n(m−1)2−2(m−2n+1)

2(m+1) . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣ = n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)
,

since n(m− 1)2 − 2(m− 2n+ 1) = m2n− 2m(n+ 1) + 5n− 2 > 0;∣∣∣∣n(m− 1)

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 1)

2
− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣ = n(m− 3) +m+ 1

m+ 1

and ∣∣∣∣n− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣ = ∣∣∣∣−f1(m,n)

2(m+ 1)

∣∣∣∣ ,
where f1(m,n) = n(m2 + 3)− (4mn+ 2m+ 2). For m = 3 and n ≥ 2 we have f1(3, n) = −8.
For m = 5 and n ≥ 2 we have f1(5, n) = 8n − 12 > 0. For m ≥ 7 and n ≥ 2 we have
m2 + 3 > m2 > 4m+ 2m+ 2. Therefore, n(m2 + 3) > 4mn+ (2m+ 2)n > 4mn+ 2m+ 2 and
so f1(m,n) > 0. Hence,

∣∣∣∣−f1(m,n)

2(m+ 1)

∣∣∣∣ =

1, if m = 3 and n ≥ 2

2n−3
3 , if m = 5 and n ≥ 2

n(m2+3)−(4mn+2m+2)
2(m+1) , if m ≥ 7 and n ≥ 2.

Now, by (2), we have

LE(CCC(G)) = 2× n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× n(m− 3) +m+ 1

m+ 1

+ (n− 1)× 1

= 4(n− 1),
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if m = 3 and n ≥ 2. If m = 5 and n ≥ 2 then

LE(CCC(G)) = 2× n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× n(m− 3) +m+ 1

m+ 1

+ (n− 1)× 2n− 3

3

=
2(2n− 1)(n+ 3)

3
.

If m ≥ 7 and n ≥ 2 then

LE(CCC(G)) = 2× n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× n(m− 3) +m+ 1

m+ 1

+ (n− 1)× n(m2 + 3)− (4mn+ 2m+ 2)

2(m+ 1)

=
m2n2 − 4mn2 +m2n+ 3n2 − 2mn− 2m+ 5n− 2

m+ 1
.

Again,∣∣∣∣n(m− 1)− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 1)− 2− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣
=

∣∣∣∣n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)

∣∣∣∣
=

n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)
,

since n(m− 1)(m+ 3)− 2(m+ 2n+ 1) = n(m2 − 4)− 2 + n(m− 3) +m(n− 2) > 0;∣∣∣∣n(m− 1)− 4

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 1)− 4

2
− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣
=

∣∣∣∣ f2(m,n)

2(m+ 1)

∣∣∣∣ ,
where f2(m,n) = n(m−6)−2+m(n−2). Clearly, for m ≥ 7 and n ≥ 2 we have f2(m,n) ≥ 0.
For m = 3 and n ≥ 2 we have f2(3, n) = −8. Also for m = 5 and n ≥ 2 we have f2(5, n) =

4n− 12. Therefore, f2(5, 2) = −4 and f2(5, n) ≥ 0 for n ≥ 3. Hence,

∣∣∣∣ f2(m,n)

2(m+ 1)

∣∣∣∣ =


1, if m = 3 and n ≥ 2

1
3 , if m = 5 and n = 2

n−3
3 , if m = 5 and n ≥ 3

n(m−3)−m−1
m+1 , if m ≥ 7 and n ≥ 2.

∣∣∣∣2n− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 2− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣ = ∣∣∣∣− f3(m,n)

2(m+ 1)

∣∣∣∣ ,
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where f3(m,n) = mn(m−6)+2m+n+2. Clearly, f3(m,n) > 0 if m ≥ 7 and n ≥ 2. For m = 3

and n ≥ 2 we have f3(3, n) = −8n+8 < 0. For m = 5 and n ≥ 2 we have f3(5, n) = −4n+12.
Therefore, f3(5, 2) = 4 and f3(5, n) ≤ 0 if n ≥ 3. Hence,

∣∣∣∣− f3(m,n)

2(m+ 1)

∣∣∣∣ =


n− 1, if m = 3 and n ≥ 2

1
3 , if m = 5 and n = 2

n−3
3 , if m = 5 and n ≥ 3

mn(m−6)+2m+n+2
2(m+1) , if m ≥ 7 and n ≥ 2.

∣∣∣∣n− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 2− n(m− 1)2 − 2(m− 2n+ 1)

2(m+ 1)

∣∣∣∣ = ∣∣∣∣− f4(m,n)

2(m+ 1)

∣∣∣∣ ,
where f4(m,n) = mn(m − 2) + 2 − (m(n − 2) + n(m − 3)). For m = 3 and n ≥ 2 we have
f4(3, n) = 8. Also, for m ≥ 5 and n ≥ 2 we have

mn(m− 2)− 2mn+ 2 = mn(m− 4) + 2 > −2m− 3n.

Therefore,

mn(m− 2) + 2 > 2mn− 2m− 3n = m(n− 2) + n(m− 3)

and so f4(m,n) > 0 for m ≥ 5 and n ≥ 2. Hence,∣∣∣∣− f4(m,n)

2(m+ 1)

∣∣∣∣ = f4(m,n)

2(m+ 1)
=

mn(m− 2) + 2−m(n− 2)− n(m− 3)

2(m+ 1)
.

By (3), we have

LE+(CCC(G)) =
n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× 1 + (n− 1)

+ (n− 1)× mn(m− 2) + 2−m(n− 2)− n(m− 3)

2(m+ 1)

= 4(n− 1),

if m = 3 and n ≥ 2. If m = 5 and n = 2 then

LE+(CCC(G)) =
n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× 1

3
+

1

3

+ (n− 1)× mn(m− 2) + 2−m(n− 2)− n(m− 3)

2(m+ 1)

=
22

3
.
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If m = 5 and n ≥ 3 then

LE+(CCC(G)) =
n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× n− 3

3
+

n− 3

3

+ (n− 1)× mn(m− 2) + 2−m(n− 2)− n(m− 3)

2(m+ 1)

=
2(2n2 + n− 3)

3
=

2(2n+ 3)(n− 1)

3
.

If m ≥ 7 and n ≥ 2 then

LE+(CCC(G)) =
n(m− 1)(m+ 3)− 2(m+ 2n+ 1)

2(m+ 1)
+

n(m− 1)− 2

2
× n(m− 3)−m− 1

m+ 1

+
mn(m− 6) + 2m+ n+ 2

2(m+ 1)

+ (n− 1)× mn(m− 2) + 2−m(n− 2)− n(m− 3)

2(m+ 1)

=
n2(m− 1)(m− 3)

m+ 1
.

Case 2. m is even.
By [20, Proposition 2.3] we have CCC(G) = Kn(m−2)

2

⊔ 2Kn. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =

{
(−1)

n(m+2)−6
2 ,

(
n(m− 2)− 2

2

)1

, (n− 1)2

}
,

L-spec(CCC(G)) =

03,

(
n(m− 2)

2

)n(m−2)−2
2

, n2n−2


and Q-spec(CCC(G)) =

(n(m− 2)− 2)1,

(
n(m− 2)− 4

2

)n(m−2)−2
2

, (2n− 2)2, (n− 2)2n−2

 .

We have ∣∣∣∣n(m− 2)− 2

2

∣∣∣∣ =
1, if m = 2

n(m−2)−2
2 , if m ≥ 4.

Therefore, by (1), we have

E(CCC(G)) =
n(m+ 2)− 6

2
+ 1 + 2(n− 1) = 4(n− 1),

if m = 2. If m ≥ 4 then

E(CCC(G)) =
n(m+ 2)− 6

2
+

n(m− 2)− 2

2
+ 2(n− 1) = n(m+ 2)− 6.
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We have |V (CCC(G))| = n(m+2)
2 and |e(CCC(G))| = n2(m−2)2−2n(m−4n+2)

8 . Therefore,
2|e(CCC(G))|
|V (CCC(G))| = n(m−2)2−2(m−4n+2)

2(m+2) . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣−f5(m,n)

2(m+ 2)

∣∣∣∣ ,
where f5(m,n) = m(n(m− 4)− 2)+ 12n− 4. Note that for m ≥ 6 we have f5(m,n) > 0 since
n(m−4) > 2 and 12n−4 > 0. For m = 2 and n ≥ 2 we have f5(2, n) = 8n−8 > 0. For m = 4

and n ≥ 2 we have f5(4, n) = 12n− 12 > 0. Therefore, for all m ≥ 2 and n ≥ 2, we have∣∣∣∣−f5(m,n)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣ f5(m,n)

2(m+ 2)

∣∣∣∣ = m(n(m− 4)− 2) + 12n− 4

2(m+ 2)
.∣∣∣∣n(m− 2)

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 2)

2
− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣f6(m,n)

m+ 2

∣∣∣∣ ,
where f6(m,n) = 2n(m − 4) +m + 2. Clearly, f6(m,n) > 0 if m ≥ 4 and n ≥ 2. For m = 2

and n ≥ 2 we have f6(2, n) = −4n+ 4 < 0. Therefore,

∣∣∣∣f6(m,n)

m+ 2

∣∣∣∣ =
n− 1, if m = 2 and n ≥ 2

2n(m−4)+m+2
m+2 , if m ≥ 4 and n ≥ 2.∣∣∣∣n− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣−f7(m,n)

2(m+ 2)

∣∣∣∣ ,
where f7(m,n) = mn(m − 6) − 2m + 8n − 4. For m = 2 and n ≥ 2 we have f7(2, n) = −8.
For m = 4 and n ≥ 2 we have f7(4, n) = −12. For m = 6 and n ≥ 2 we have f7(6, n) =

8n − 16 ≥ 0. Also, for m ≥ 8 and n ≥ 2 we have m2 ≥ 8m which gives m(m − 6) ≥ 2m

and so mn(m − 6) ≥ 2mn > 2m. Therefore, mn(m − 6) − 2m > 0 and so f7(m,n) > 0 since
8n− 4 > 0. Hence,

∣∣∣∣−f7(m,n)

2(m+ 2)

∣∣∣∣ =
1, if m = 2, 4 and n ≥ 2

mn(m−6)−2m+8n−4
2(m+2) , if m ≥ 6 and n ≥ 2.

Now, by (2), we have

LE(CCC(G)) = 3× m(n(m− 4)− 2) + 12n− 4

2(m+ 2)
+

n(m− 2)− 2

2
× (n− 1) + (2n− 2)× 1

= 4(n− 1),

if m = 2 and n ≥ 2. If m = 4 and n ≥ 2 then

LE(CCC(G)) = 3× m(n(m− 4)− 2) + 12n− 4

2(m+ 2)
+

n(m− 2)− 2

2
× 2n(m− 4) +m+ 2

m+ 2

+ (2n− 2)× 1

= 6(n− 1).
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If m ≥ 6 and n ≥ 2 then

LE(CCC(G)) = 3× m(n(m− 4)− 2) + 12n− 4

2(m+ 2)
+

n(m− 2)− 2

2
× 2n(m− 4) +m+ 2

m+ 2

+ (2n− 2)× mn(m− 6)− 2m+ 8n− 4

2(m+ 2)

=
2m2n2 − 12mn2 +m2n+ 16n2 − 4mn− 2m+ 12n− 4

m+ 2
.

Again,∣∣∣∣n(m− 2)− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 2)− 2− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣ f8(m,n)

2(m+ 2)

∣∣∣∣ ,
where f8(m,n) = n(m2 − 20) + 2m(n − 1) + 2mn − 4. For m = 2 and n ≥ 2 we have
f8(2, n) = −8n − 8 < 0. For m = 4 and n ≥ 2 we have f8(4, n) = 12n − 12 > 0. For m ≥ 6

and n ≥ 2 we have f8(m,n) > 0. Therefore,

∣∣∣∣ f8(m,n)

2(m+ 2)

∣∣∣∣ =

n+ 1, if m = 2 and n ≥ 2

n− 1, if m = 4 and n ≥ 2

n(m2−20)+2m(n−1)+2mn−4
2(m+2) , if m ≥ 6 and n ≥ 2.

∣∣∣∣n(m− 2)− 4

2
− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n(m− 2)− 4

2
− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣
=

∣∣∣∣f9(m,n)

m+ 2

∣∣∣∣ ,
where f9(m,n) = n(m−8)+m(n−1)−2. For m = 2 and n ≥ 2 we have f9(2, n) = −4n−4 < 0.
For m = 4 and n ≥ 2 we have f9(4, n) = −6. For m = 6 and n ≥ 2 we have f9(6, n) = 4n−8 ≥
0. Further, if For m ≥ 8 and n ≥ 2 then f9(m,n) > 0 since n(m−8) ≥ 0 and m(n−1)−2 > 0.
Hence,

∣∣∣∣f9(m,n)

m+ 2

∣∣∣∣ =

n+ 1, if m = 2 and n ≥ 2

1, if m = 4 and n ≥ 2

n(m−8)+m(n−1)−2
m+2 , if m ≥ 6 and n ≥ 2.

∣∣∣∣2n− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 2− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣−f10(m,n)

2(m+ 2)

∣∣∣∣ ,
where f10(m,n) = n(m2 − 8m + 4) + 2m + 4. Clearly, f10(m,n) > 0 for m ≥ 8 and n ≥ 2.
For m = 2 and n ≥ 2 we have f10(2, n) = −8n + 8 < 0. For m = 4 and n ≥ 2 we have



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 67-118. 85

f10(4, n) = −12n+ 12 < 0. For m = 6 and n ≥ 2 we have f10(6, n) = −8n+ 16 ≤ 0. Hence,

∣∣∣∣f10(m,n)

m+ 2

∣∣∣∣ =


n− 1, if m = 2 and n ≥ 2

n− 1, if m = 4 and n ≥ 2

n−2
2 , if m = 6 and n ≥ 2

n(m2−8m+4)+2m+4
2(m+2) , if m ≥ 8 and n ≥ 2.∣∣∣∣n− 2− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣n− 2− n(m− 2)2 − 2(m− 4n+ 2)

2(m+ 2)

∣∣∣∣ = ∣∣∣∣−f11(m,n)

2(m+ 2)

∣∣∣∣ ,
where f11(m,n) = n(m − 2)(m − 4) + 2m + 4. Note that for m ≥ 4 and n ≥ 2 we have
f11(m,n) > 0. For m = 2 and n ≥ 2 we have f11(m,n) = 8. Therefore,∣∣∣∣−f11(m,n)

2(m+ 2)

∣∣∣∣ = f11(m,n)

2(m+ 2)
=

n(m− 2)(m− 4) + 2m+ 4

2(m+ 2)
.

By (3), we have

LE+(CCC(G)) = n+ 1 +
n(m− 2)− 2

2
× (n+ 1) + 2× (n− 1)

+ (2n− 2)× n(m− 2)(m− 4) + 2m+ 4

2(m+ 2)

= 4(n− 1),

if m = 2 and n ≥ 2. If m = 4 and n ≥ 2 then

LE+(CCC(G)) = n− 1 +
n(m− 2)− 2

2
× 1 + 2× (n− 1)

+ (2n− 2)× n(m− 2)(m− 4) + 2m+ 4

2(m+ 2)

= 6(n− 1).

If m = 6 and n ≥ 2 then

LE+(CCC(G)) =
n(m2 − 20) + 2m(n− 1) + 2mn− 4

2(m+ 2)

+
n(m− 2)− 2

2
× n(m− 8) +m(n− 1)− 2

m+ 2

+ 2× n− 2

2
+ (2n− 2)× n(m− 2)(m− 4) + 2m+ 4

2(m+ 2)

= 2(n+ 2)(n− 1).

If m ≥ 8 and n ≥ 2 then

LE+(CCC(G)) =
n(m2 − 20) + 2m(n− 1) + 2mn− 4

2(m+ 2)

+
n(m− 2)− 2

2
× n(m− 8) +m(n− 1)− 2

m+ 2
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+ 2× n(m2 − 8m+ 4) + 2m+ 4

2(m+ 2)

+ (2n− 2)× n(m− 2)(m− 4) + 2m+ 4

2(m+ 2)

=
2n2(m− 2)(m− 4)

m+ 2
.

This completes the proof.

Theorem 3.4. If G = V8n then

(i) Spec(CCC(G)) =


{
(−1)2n−2, 02, (2n− 2)1

}
, if n is odd{

(−1)2n−1, 12, (2n− 3)1
}
, if n is even

and E(CCC(G)) =

4n− 4, if n is odd

4n− 2, if n is even.

(ii) L-spec(CCC(G)) =


{
03, (2n− 1)2n−2

}
, if n is odd{

03, 22, (2n− 2)2n−3
}
, if n is even

and LE(CCC(G)) =


6(2n−1)(2n−2)

2n+1 , if n is odd

6, if n = 2

2(2n−3)(5n−7)
n+1 , if n is even and n ≥ 4.

(iii) Q-spec(CCC(G)) =


{
02, (4n− 4)1, (2n− 3)2n−2

}
, if n is odd{

22, 02, (4n− 6)1, (2n− 4)2n−3
}
, if n is even

and LE+(CCC(G)) =


4(2n−1)(2n−2)

2n+1 , if n is odd

6, if n = 2

16(n−1)(n−2)
n+1 , if n is even and n ≥ 4.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By [20, Proposition 2.4] we have CCC(G) = 2K1 ⊔ K2n−1. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =
{
(−1)2n−2, 02, (2n− 2)1

}
, L-spec(CCC(G)) =

{
03, (2n− 1)2n−2

}
and Q-spec(CCC(G)) =

{
02, (4n− 4)1, (2n− 3)2n−2

}
.

Hence, by (1), we get
E(CCC(G)) = 2n− 2 + 2n− 2 = 4n− 4.
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We have |V (CCC(G))| = 2n+ 1 and |e(CCC(G))| = (2n−1)(2n−2)
2 . Therefore,

2|e(CCC(G))|
|V (CCC(G))|

=
(2n− 1)(2n− 2)

2n+ 1
.

Also, ∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = (2n− 1)(2n− 2)

2n+ 1

and

∣∣∣∣2n− 1− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 1− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = 3(2n− 1)

2n+ 1
.

Now, by (2), we have

LE(CCC(G)) = 3× (2n− 1)(2n− 2)

2n+ 1
+ (2n− 2)× 3(2n− 1)

2n+ 1
=

6(2n− 1)(2n− 2)

2n+ 1
.

Again,∣∣∣∣4n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣4n− 4− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = (2n− 2)(2n+ 3)

2n+ 1

and

∣∣∣∣2n− 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 3− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = 2n− 5

2n+ 1
.

By (3), we have

LE+(CCC(G)) = 2× (2n− 1)(2n− 2)

2n+ 1
+

(2n− 2)(2n+ 3)

2n+ 1
+ (2n− 2)× 2n− 5

2n+ 1

=
4(2n− 1)(2n− 2)

2n+ 1
.

Case 2. n is even.
By [20, Proposition 2.4] we have CCC(G) = 2K2 ⊔ K2n−2. Therefore, by Theorem 2.1, it

follows that

Spec(CCC(G)) =
{
(−1)2n−1, 12, (2n− 3)1

}
, L-spec(CCC(G)) =

{
03, 22, (2n− 2)2n−3

}
and Q-spec(CCC(G)) =

{
22, 02, (4n− 6)1, (2n− 4)2n−3

}
.

Hence, by (1), we get

E(CCC(G)) = 2n− 1 + 2 + 2n− 3 = 4n− 2.

We have |V (CCC(G))| = 2n+ 2 and |e(CCC(G))| = (2n−2)(2n−3)+4
2 . Therefore, 2|e(CCC(G))|

|V (CCC(G))| =
(n−1)(2n−3)+2

n+1 . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (n− 1)(2n− 3) + 2

n+ 1

∣∣∣∣ = (n− 1)(2n− 3) + 2

n+ 1
,



88 P. Bhowal and R. K. Nath∣∣∣∣2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2− (n− 1)(2n− 3) + 2

n+ 1

∣∣∣∣
=

∣∣∣∣−(2n− 1)(n− 3)

n+ 1

∣∣∣∣
=

1, if n = 2

(2n−1)(n−3)
n+1 , if n ≥ 4

and ∣∣∣∣2n− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 2− (n− 1)(2n− 3) + 2

n+ 1

∣∣∣∣ = 5n− 7

n+ 1
.

Now, by (2), we have

LE(CCC(G)) = 3× (n− 1)(2n− 3) + 2

n+ 1
+ 2× 1 + (2n− 3)× 5n− 7

n+ 1
= 6,

if n = 2. If n ≥ 4 then

LE(CCC(G)) = 3× (n− 1)(2n− 3) + 2

n+ 1
+ 2× (2n− 1)(n− 3)

n+ 1
+ (2n− 3)× 5n− 7

n+ 1

=
2(10n2 − 29n+ 21)

n+ 1
=

2(2n− 3)(5n− 7)

n+ 1
.

Again,

∣∣∣∣4n− 6− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣4n− 6− (n− 1)(2n− 3) + 2

n+ 1

∣∣∣∣ = 2n2 + 3n− 11

n+ 1

and ∣∣∣∣2n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 4− (n− 1)(2n− 3) + 2

n+ 1

∣∣∣∣
=

∣∣∣∣3n− 9

n+ 1

∣∣∣∣
=

1, if n = 2

3n−9
n+1 , if n ≥ 4.

By (3), we have

LE+(CCC(G)) = 2× 1 + 2× (n− 1)(2n− 3) + 2

n+ 1
+

2n2 + 3n− 11

n+ 1
+ (2n− 3)× 1 = 6,
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if n = 2. If n ≥ 4 then

LE+(CCC(G))

= 2× (2n− 1)(n− 3)

n+ 1
+ 2× (n− 1)(2n− 3) + 2

n+ 1
+

2n2 + 3n− 11

n+ 1

+ (2n− 3)× 3n− 9

n+ 1

=
16(n− 1)(n− 2)

n+ 1
.

This completes the proof.

Theorem 3.5. If G = SD8n then

(i) Spec(CCC(G)) =


{
(−1)2n, 31, (2n− 3)1

}
, if n is odd{

(−1)2n−2, 02, (2n− 2)1
}
, if n is even

and E(CCC(G)) =

4n, if n is odd

4n− 4, if n is even.

(ii) L-spec(CCC(G)) =


{
02, 43, (2n− 2)2n−3

}
, if n is odd{

03, (2n− 1)2n−2
}
, if n is even

and LE(CCC(G)) =


12, if n = 3

2(2n−3)(5n−11)
n+1 , if n is odd and n ≥ 5

6(2n−1)(2n−2)
2n+1 , if n is even.

(iii) Q-spec(CCC(G)) =


{
61, 23, (4n− 6)1, (2n− 4)2n−3

}
, if n is odd{

02, (4n− 4)1, (2n− 3)2n−2
}
, if n is even

and LE+(CCC(G)) =



12, if n = 3

22, if n = 5

16(n−1)(n−3)
n+1 , if n is odd and n ≥ 7

28
5 , if n = 2

4(2n−1)(2n−2)
2n+1 , if n is even and n ≥ 4.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
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By [20, Proposition 2.5] we have CCC(G) = K4 ⊔ K2n−2. Therefore, by Theorem 2.1, it
follows that

Spec(CCC(G)) =
{
(−1)2n, 31, (2n− 3)1

}
, L-spec(CCC(G)) =

{
02, 43, (2n− 2)2n−3

}
and Q-spec(CCC(G)) =

{
61, 23, (4n− 6)1, (2n− 4)2n−3

}
.

Hence, by (1), we get
E(CCC(G)) = 2n+ 3 + 2n− 3 = 4n.

We have |V (CCC(G))| = 2n+2 and |e(CCC(G))| = (2n−2)(2n−3)+12
2 . Therefore, 2|e(CCC(G))|

|V (CCC(G))| =
(n−1)(2n−3)+6

n+1 . Also,∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣ = (n− 1)(2n− 3) + 6

n+ 1
,

∣∣∣∣4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣4− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣ = ∣∣∣∣−2n2 + 9n− 5

n+ 1

∣∣∣∣ =
1, if n = 3

2n2−9n+5
n+1 , if n ≥ 5

and ∣∣∣∣2n− 2− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 2− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣ = 5n− 11

n+ 1
.

Now, by (2), we have

LE(CCC(G)) = 2× (n− 1)(2n− 3) + 6

n+ 1
+ 3× 1 + (2n− 3)× 5n− 11

n+ 1
= 12,

if n = 3. If n ≥ 5 then

LE(CCC(G)) = 2× (n− 1)(2n− 3) + 6

n+ 1
+ 3× 2n2 − 9n+ 5

n+ 1
+ (2n− 3)× 5n− 11

n+ 1

=
2(10n2 − 37n+ 33)

n+ 1
=

2(2n− 3)(5n− 11)

n+ 1
.

Again, ∣∣∣∣6− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣6− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣
=

∣∣∣∣−2n2 + 11n− 3

n+ 1

∣∣∣∣
=


−2n2+11n−3

n+1 , if n = 3, 5

2n2−11n+3
n+1 , if n ≥ 7,∣∣∣∣2− 2|e(CCC(G))|

|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣ = 2n2 − 7n+ 7

n+ 1
,

∣∣∣∣4n− 6− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣4n− 6− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣ = 2n2 + 3n− 15

n+ 1
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and ∣∣∣∣2n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 4− (n− 1)(2n− 3) + 6

n+ 1

∣∣∣∣
=

∣∣∣∣3n− 13

n+ 1

∣∣∣∣
=

1, if n = 3

3n−13
n+1 , if n ≥ 5.

By (3), we have

LE+(CCC(G)) =
−2n2 + 11n− 3

n+ 1
+ 3× 2n2 − 7n+ 7

n+ 1
+

2n2 + 3n− 15

n+ 1
+ (2n− 3)× 1

= 12,

if n = 3. If n = 5 then

LE+(CCC(G)) =
−2n2 + 11n− 3

n+ 1
+ 3× 2n2 − 7n+ 7

n+ 1
+

2n2 + 3n− 15

n+ 1

+ (2n− 3)× 3n− 13

n+ 1

= 22.

If n ≥ 7 then

LE+(CCC(G)) =
2n2 − 11n+ 3

n+ 1
+ 3× 2n2 − 7n+ 7

n+ 1
+

2n2 + 3n− 15

n+ 1
+ (2n− 3)× 3n− 13

n+ 1

=
16(n− 1)(n− 3)

n+ 1
.

Case 2. n is even.
By [20, Proposition 2.5] we have CCC(G) = 2K1 ⊔ K2n−1. Therefore, by Theorem 2.1, it

follows that

Spec(CCC(G)) =
{
(−1)2n−2, 02, (2n− 2)1

}
, L-spec(CCC(G)) =

{
03, (2n− 1)2n−2

}
and Q-spec(CCC(G)) =

{
02, (4n− 4)1, (2n− 3)2n−2

}
.

Hence, by (1), we get

E(CCC(G)) = 2n− 2 + 2n− 2 = 4n− 4.

We have V (CCC(G)) = 2n+1 and e(CCC(G)) = (2n−1)(2n−2)
2 . So, 2|e(CCC(G))|

|V (CCC(G))| =
(2n−1)(2n−2)

2n+1 .
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Also, ∣∣∣∣0− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣0− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = (2n− 1)(2n− 2)

2n+ 1

and ∣∣∣∣2n− 1− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 1− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = 3(2n− 1)

2n+ 1
.

Now, by (2), we have

LE(CCC(G)) = 3× (2n− 1)(2n− 2)

2n+ 1
+ (2n− 2)× 3(2n− 1)

2n+ 1
=

6(2n− 1)(2n− 2)

2n+ 1
.

Again,∣∣∣∣4n− 4− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣4n− 4− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = (2n− 2)(2n+ 3)

2n+ 1
and

∣∣∣∣2n− 3− 2|e(CCC(G))|
|V (CCC(G))|

∣∣∣∣ = ∣∣∣∣2n− 3− (2n− 1)(2n− 2)

2n+ 1

∣∣∣∣ = ∣∣∣∣2n− 5

2n+ 1

∣∣∣∣ =


1
5 , if n = 2

2n−5
2n+1 , if n ≥ 4.

By (3), we have

LE+(CCC(G)) = 2× (2n− 1)(2n− 2)

2n+ 1
+

(2n− 2)(2n+ 3)

2n+ 1
+ (2n− 2)× 1

5
=

28

5
,

if n = 2. If n ≥ 4 then

LE+(CCC(G)) = 2× (2n− 1)(2n− 2)

2n+ 1
+

(2n− 2)(2n+ 3)

2n+ 1
+ (2n− 2)× 2n− 5

2n+ 1

=
4(2n− 1)(2n− 2)

2n+ 1
.

This completes the proof.

We conclude this section with the following corollary.

Corollary 3.6. If G is isomorphic to D2n, Q4m, U(n,m), V8n or SD8n then CCC(G) is super
integral.

4. Comparing various energies

In this section we compare various energies of CCC(G) obtained in Section 3 and derive the
following relations.

Theorem 4.1. Let G = D2n.

(i) If n = 3, 4, 6 then E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)).
(ii) If n = 5 then E(CCC(G)) < LE+(CCC(G)) = LE(CCC(G)).
(iii) If n = 10 then LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).
(iv) If n ≥ 7 but n ̸= 10 then E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 67-118. 93

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

If n = 3 then, by Theorem 3.1, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0.

If n = 5 then, by Theorem 3.1, we have

E(CCC(G))− LE+(CCC(G)) = n− 3− (n− 3)(n+ 3)

n+ 1
= −4

5
< 0

and LE+(CCC(G)) = LE(CCC(G)) = 8
3 . Therefore, E(CCC(G)) < LE+(CCC(G)) =

LE(CCC(G)).
If n ≥ 7 then, by Theorem 3.1, we have

E(CCC(G))− LE+(CCC(G)) = n− 3− (n− 3)(n+ 3)

n+ 1
= −2(n− 3)

n+ 1
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
(n− 3)(n+ 3)

n+ 1
− 2(n− 1)(n− 3)

n+ 1
= −(n− 3)(n− 5)

n+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
Case 2. n is even.

Consider the following subcases.
Subcase 2.1 n

2 is even.
If n = 4 then, by Theorem 3.1, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0.

If n = 8 then, by Theorem 3.1, we have

E(CCC(G))− LE+(CCC(G)) = n− 4− (n− 4)(n+ 6)

n+ 2
= −8

5
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
(n− 4)(n+ 6)

n+ 2
− 3(n− 2)(n− 4)

n+ 2
= −8

5
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
If n ≥ 12 then, by Theorem 3.1, we have

E(CCC(G))− LE+(CCC(G)) = n− 4− 2(n− 2)(n− 4)

n+ 2
= −(n− 4)(n− 6)

n+ 2
< 0

and
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LE+(CCC(G))− LE(CCC(G)) =
2(n− 2)(n− 4)

n+ 2
− 3(n− 2)(n− 4)

n+ 2

= −(n− 2)(n− 4)

n+ 2
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
Subcase 2.2 n

2 is odd.
If n = 6 then, by Theorem 3.1, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 4.

If n = 10 then, by Theorem 3.1, we have

LE+(CCC(G))− E(CCC(G)) =
22

3
− (n− 2) = −2

3
< 0

and

E(CCC(G))− LE(CCC(G)) = n− 2− (n− 4)(3n− 10)

n+ 2
= −2 < 0.

Therefore, LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).
If n ≥ 14 then, by Theorem 3.1, we have

E(CCC(G))− LE+(CCC(G)) = n− 2− 2(n− 2)(n− 6)

n+ 2

= −(n− 2)(n− 10)

n+ 2
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
2(n− 2)(n− 6)

n+ 2
− (n− 4)(3n− 10)

n+ 2

= −n2 − 6n+ 16

n+ 2

= −n(n− 14) + 8n+ 10

n+ 2
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)). Hence, the result follows.

Theorem 4.2. Let G = Q4m.
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(i) If m = 2, 3 then E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)).
(ii) If m = 5 then LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).
(iii) If m = 7 then LE+(CCC(G)) = E(CCC(G)) < LE(CCC(G)).
(iv) If m = 4, 6 or m ≥ 8 then E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.

If m = 3 then, by Theorem 3.2, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 4.

If m = 5 then, by Theorem 3.2, we have

LE+(CCC(G))− E(CCC(G)) =
22

3
− (2m− 2) = −2

3
< 0

and

E(CCC(G))− LE(CCC(G)) = 2m− 2− 2(m− 2)(3m− 5)

m+ 1
= −2 < 0.

Therefore, LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).
If m = 7 then, by Theorem 3.2, we have LE+(CCC(G)) = E(CCC(G)) = 12 and

LE+(CCC(G))− LE(CCC(G)) =
4(m− 1)(m− 3)

m+ 1
− 2(m− 2)(3m− 5)

m+ 1

= −2(m+ 4)(m− 1)

m+ 1
< 0.

Therefore, LE+(CCC(G)) = E(CCC(G)) < LE(CCC(G)).
If m ≥ 9 then, by Theorem 3.2, we have

E(CCC(G))− LE+(CCC(G)) = 2m− 2− 4(m− 1)(m− 3)

m+ 1
= −2(m− 1)(m− 7)

m+ 1
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
4(m− 1)(m− 3)

m+ 1
− 2(m− 2)(3m− 5)

m+ 1

= −2(m+ 4)(m− 1)

m+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
Case 2. m is even.

If m = 2 then, by Theorem 3.2, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0.

If m = 4 then, by Theorem 3.2, we have

E(CCC(G))− LE+(CCC(G)) = 2m− 4− 2(m− 2)(m+ 3)

m+ 1
= −8

5
< 0
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and

LE+(CCC(G))− LE(CCC(G)) =
2(m− 2)(m+ 3)

m+ 1
− 6(m− 1)(m− 2)

m+ 1
= −8

5
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
If m ≥ 6 then, by Theorem 3.2, we have

E(CCC(G))− LE+(CCC(G)) = 2m− 4− 4(m− 1)(m− 2)

m+ 1
= −2(m− 2)(m− 3)

m+ 1
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
4(m− 1)(m− 2)

m+ 1
− 6(m− 1)(m− 2)

m+ 1

= −2(m− 1)(m− 2)

m+ 1
.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)). Hence, the result follows.

Theorem 4.3. Let G = U(n,m).

(i) If m = 2, 3, 4 and n ≥ 2 then LE+(CCC(G)) = E(CCC(G)) = LE(CCC(G)).

(ii) If m = 5 and n = 2, 3; or m = 6 and n = 2 then

LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).

(iii) If m = 5 and n ≥ 4; m ≥ 6 and n ≥ 3; or m ≥ 8 and n ≥ 2 then

E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

(iv) If m = 7 and n = 2 then E(CCC(G)) = LE+(CCC(G)) < LE(CCC(G)).

Proof. We shall prove the result by considering the following cases.
Case 1. If m is odd and n ≥ 2.

If m = 3 and n ≥ 2 then, by Theorem 3.3, we have

LE+(CCC(G)) = E(CCC(G)) = LE(CCC(G)) = 4(n− 1).

If m = 5 and n = 2 then, by Theorem 3.3, we have

LE+(CCC(G))− E(CCC(G)) =
2n2 + 10n− 6

3
− (n(m+ 1)− 4) = −2

3
< 0

and
E(CCC(G))− LE(CCC(G)) = n(m+ 1)− 4− 2(2n− 1)(n+ 3)

3
= −2 < 0.

Therefore, LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).

If m = 5 and n = 3 then, by Theorem 3.3, we have

LE+(CCC(G))− E(CCC(G)) =
2(2n+ 3)(n− 1)

3
− (n(m+ 1)− 4) = −2 < 0
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and
E(CCC(G))− LE(CCC(G)) = n(m+ 1)− 4− 2(2n− 1)(n+ 3)

3
= −4 < 0.

Therefore, LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).

If m = 5 and n ≥ 4 then, by Theorem 3.3, we have

E(CCC(G))− LE+(CCC(G)) = n(m+ 1)− 4− 2(2n+ 3)(n− 1)

3

=
−2(2n2 − 8n+ 3)

3

=
−2(2n(n− 4) + 3)

3
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
2(2n+ 3)(n− 1)

3
− 2(2n− 1)(n+ 3)

3
=

−8n

3
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

If m ≥ 7 and n ≥ 2 then, by Theorem 3.3, we have

E(CCC(G))− LE+(CCC(G)) = n(m+ 1)− 4− n2(m− 1)(m− 3)

m+ 1
= −f1(m,n)

m+ 1
,

where f1(m,n) = mn(m − 4)(n − 3) + 2mn(m − 7) + 3n(n − 1) + 4(m + 1). For m ≥ 7 and
n = 2 we have f1(m,n) = 2(m − 1)(m − 7) ≥ 0. Hence, f1(7, 2) = 0 and f1(m, 2) > 0 if
m ≥ 9. Thus, E(CCC(G)) = LE+(CCC(G)) and E(CCC(G)) < LE+(CCC(G)) according as
if m = 7, n = 2 and m ≥ 9, n = 2. For m ≥ 7 and n ≥ 3 we have f1(m,n) > 0 and so
E(CCC(G)) < LE+(CCC(G)).

If m ≥ 7 and n ≥ 2 then, by Theorem 3.3, we also have

LE+(CCC(G))− LE(CCC(G))

=
n2(m− 1)(m− 3)

m+ 1
− m2n2 − 4mn2 +m2n+ 3n2 − 2mn− 2m+ 5n− 2

m+ 1

= −m2n− 2mn− 2m+ 5n− 2

m+ 1

= −(mn− 2)(m− 2) + 5(n− 2) + 4

m+ 1
< 0.

Therefore, LE+(CCC(G)) < LE(CCC(G)). Thus, if m = 7 and n = 2 then

E(CCC(G)) = LE+(CCC(G)) < LE(CCC(G))

and if m ≥ 7 and n ≥ 3 or m ≥ 9 and n = 2 then

E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
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Case 2. m is even and n ≥ 2.
If m = 2 and n ≥ 2 then, by Theorem 3.3, we have

LE+(CCC(G)) = E(CCC(G)) = LE(CCC(G)) = 4(n− 1).

If m = 4 and n ≥ 2 then, by Theorem 3.3, we have

LE+(CCC(G)) = E(CCC(G)) = LE(CCC(G)) = 6(n− 1).

If m = 6 and n = 2 then, by Theorem 3.3, we have

LE+(CCC(G))− E(CCC(G)) = 2(n+ 2)(n− 1)− (n(m+ 2)− 6) = −4 < 0

and

E(CCC(G))− LE(CCC(G))

= n(m+ 2)− 6− 2m2n2 − 12mn2 +m2n+ 16n2 − 4mn− 2m+ 12n− 4

m+ 2
= −2 < 0.

Therefore, LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).

If m = 6 and n ≥ 3 then by Theorem 3.3

E(CCC(G))− LE+(CCC(G)) = n(m+ 2)− 6− 2(n+ 2)(n− 1) = 2n(3− n)− 2 < 0

and

LE+(CCC(G))− LE(CCC(G))

= 2(n+ 2)(n− 1)− 2m2n2 − 12mn2 +m2n+ 16n2 − 4mn− 2m+ 12n− 4

m+ 2

= −(n+ 2) < 0.

Therefore E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

If m ≥ 8 and n ≥ 2 then, by Theorem 3.3, we have

E(CCC(G))− LE+(CCC(G)) = n(m+ 2)− 6− 2n2(m− 2)(m− 4)

m+ 2

= −2m2n2 − 12mn2 −m2n+ 16n2 − 4mn+ 6m− 4n+ 12

m+ 2

= −f2(m,n)

m+ 2
,

where f2(m,n) = mn(2n − 1)(m − 8) + 2m(2n(n − 3) + 3) + 4n(4n − 1) + 12. For n = 2

and m ≥ 8 we have f2(m,n) = (6m − 2)(m − 8) + 52 > 0. For n ≥ 3 and m ≥ 8 we have
f2(m,n) > 0. Therefore, if m ≥ 8 and n ≥ 2 then E(CCC(G)) < LE+(CCC(G)).
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If m ≥ 8 and n ≥ 2 then, by Theorem 3.3, we also have

LE+(CCC(G))− LE(CCC(G))

=
2n2(m− 2)(m− 4)

m+ 2

− 2m2n2 − 12mn2 +m2n+ 16n2 − 4mn− 2m+ 12n− 4

m+ 2

= −m2n− 4mn− 2m+ 12n− 4

m+ 2

= −mn(m− 8) + 2m(2n− 1) + 4(3n− 1)

m+ 2
< 0.

Therefore, LE+(CCC(G)) < LE(CCC(G)). Thus, if m ≥ 8 and n ≥ 2 then

E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

Hence, the result follows.

Theorem 4.4. If G = V8n then E(CCC(G)) ≤ LE+(CCC(G)) ≤ LE(CCC(G)). The equality
holds if and only if n = 2.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By Theorem 3.4, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 4− 4(2n− 1)(2n− 2)

2n+ 1
= −4(n− 1)(2n− 3)

2n+ 1

and

LE+(CCC(G))− LE(CCC(G)) =
4(2n− 1)(2n− 2)

2n+ 1
− 6(2n− 1)(2n− 2)

2n+ 1

= −2(2n− 1)(2n− 2)

2n+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
Case 2. n is even.

If n = 2 then, by Theorem 3.4, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 6.

If n ≥ 4 then, by Theorem 3.4, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 2− 16(n− 1)(n− 2)

n+ 1

= −2(6n2 + 25n− 17)

n+ 1
= −2(6n(n− 4) + 49n− 7)

n+ 1
< 0
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and

LE+(CCC(G))− LE(CCC(G)) =
16(n− 1)(n− 2)

n+ 1
− 2(2n− 3)(5n− 7)

n+ 1

= −2(2n2 − 5n+ 5)

n+ 1
= −2(2n(n− 4) + 3n+ 5)

n+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)). Hence, the result follows.

Theorem 4.5. If G = SD8n then E(CCC(G)) ≤ LE+(CCC(G)) ≤ LE(CCC(G)). The equality
holds if and only if n = 3.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

If n = 3 then, by Theorem 3.5, we have

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 12.

If n = 5 then, by Theorem 3.5, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 22 = −2 < 0

and
LE+(CCC(G))− LE(CCC(G)) = 22− 2(2n− 3)(5n− 11)

n+ 1
= −32

3
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
If n ≥ 7 then, by Theorem 3.5, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 16(n− 1)(n− 3)

n+ 1

= −4(3n2 − 17n+ 12)

n+ 1
= −4(3n(n− 7) + 4n+ 12)

n+ 1
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
16(n− 1)(n− 3)

n+ 1
− 2(2n− 3)(5n− 11)

n+ 1

= −2(2n2 − 5n+ 9)

n+ 1
= −2(2n(n− 7) + 9n+ 9)

n+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
Case 2. n is even.

If n = 2 then, by Theorem 3.5, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 4− 28

5
= −8

5
< 0

and
LE+(CCC(G))− LE(CCC(G)) =

28

5
− 6(2n− 1)(2n− 2)

2n+ 1
= −8

5
< 0.
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Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).
If n ≥ 4 then, by Theorem 3.5, we have

E(CCC(G))− LE+(CCC(G)) = 4n− 4− 4(2n− 1)(2n− 2)

2n+ 1
= −4(n− 1)(2n− 3)

2n+ 1
< 0

and

LE+(CCC(G))− LE(CCC(G)) =
4(2n− 1)(2n− 2)

2n+ 1
− 6(2n− 1)(2n− 2)

2n+ 1

= −2(2n− 1)(2n− 2)

2n+ 1
< 0.

Therefore, E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)). Hence, the result follows.

Note that Theorems 4.1–4.5 can be summarized in the following way.

Theorem 4.6. Let G be a finite non-abelian group. Then we have the following.

(i) If G is isomorphic to D6, D8, D12, Q8, Q12, U(n,2), U(n,3), U(n,4)(n ≥ 2), V16 or SD24 then

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)).

(ii) If G is isomorphic to D20, Q20, U(2,5), U(3,5) or U(2,6) then

LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)).

(iii) If G is isomorphic to D14, D16, D18, D2n(n ≥ 11), Q16, Q24, Q4m(m ≥ 8), U(n,5), (n ≥ 4),
U(n,m)(m ≥ 6 and n ≥ 3), U(n,m)(m ≥ 8 and n ≥ 2), V8n(n ≥ 3), SD16 or SD8n(n ≥ 4) then

E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)).

(iv) If G is isomorphic to Q28 or U(2,7) then E(CCC(G)) = LE+(CCC(G)) < LE(CCC(G)).

(v) If G is isomorphic to D10 then E(CCC(G)) < LE+(CCC(G)) = LE(CCC(G)).

We conclude this section with the following remark regarding Conjecture 2.2 and Question
2.3.

Remark 4.7. By Theorem 4.6, it follows that E(CCC(G)) ≤ LE(CCC(G)) and
LE+(CCC(G)) ≤ LE(CCC(G)) for commuting conjugacy class graph of the groups
D2n, Q4m, U(n,m), V8n and SD8n. Therefore, Conjecture 2.2 holds for commuting conjugacy
class graph of these groups whereas the inequality in Question 2.3 does not. However,
LE(CCC(G)) = LE+(CCC(G)) if G = D6, D8, D10, D12, Q8, Q12, V16, SD24 and U(n,m) where
m = 2, 3, 4 and n ≥ 2.
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5. Hyperenergetic and borderenergetic graph

It is well-known that

(4) E(Kn) = LE(Kn) = LE+(Kn) = 2(n− 1).

A graph G with n vertices is called hyperenergetic, L-hyperenergetic or Q-hyperenergetic ac-
cording as E(Kn) < E(G), LE(Kn) < LE(G) or LE+(Kn) < LE+(G). Also, G is called bor-
derenergetic, L-borderenergetic and Q-borderenergetic if E(Kn) = E(G), LE(Kn) = LE(G)
and LE+(Kn) = LE+(G) respectively. These graphs are considered in [24, 11, 10, 23, 9].
In this section we consider commuting conjugacy class graph CCC(G) for the groups con-
sidered in Section 3 and determine whether they are hyperenergetic, L-hyperenergetic or Q-
hyperenergetic. We shall also determine whether they are borderenergetic, L-borderenergetic
or Q-borderenergetic.

Theorem 5.1. Let G = D2n.

(i) If n is odd or n = 4, 6 then CCC(G) is neither hyperenergetic, borderenergetic,
L-hyper-energetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(ii) If n = 8, 10, 12, 14 then CCC(G) is L-hyperenergetic but neither hyperenergetic,
borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(iii) If n is even and n ≥ 16 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but
neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By [20, Proposition 2.1] we have CCC(G) = K1 ⊔ Kn−1
2

. Therefore, |V (CCC(G))| = n+1
2 .

Using (4), we get

(5) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = n− 1

If n = 3 then, by Theorem 4.1 and Theorem 3.1, we get

(6) E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0 < 2 = E(K|V (CCC(G))|).

If n = 5 then, by Theorem 4.1 and Theorem 3.1, we get

(7) E(CCC(G)) < LE+(CCC(G)) = LE(CCC(G)) =
8

3
< 4 = E(K|V (CCC(G))|).

Therefore CCC(G) is neither hyperenergetic nor L-hyperenergetic nor Q-hyperenergetic for
n = 5.

If n ≥ 7 then, by Theorem 4.1 and Theorem 3.1, we get

E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)) =
(n− 3)(n+ 3)

n+ 1
.
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Again,
(n− 3)(n+ 3)

n+ 1
− (n− 1) = − 8

n+ 1
< 0

Therefore,

(8) E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)) < n− 1 = E(K|V (CCC(G))|).

Hence, in view of (5)–(8), it follows that CCC(G) is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
Case 2. n is even.

By [20, Proposition 2.1] we have CCC(G) = 2K1 ⊔Kn
2
−1. Therefore, |V (CCC(G))| = n

2 + 1.
Using (4), we get

(9) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = n.

Subcase 2.1. n
2 is even.

If n = 4 then, by Theorem 4.1 and Theorem 3.1, we get

(10) E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0 < 4 = E(K|V (CCC(G))|).

Therefore, by (9) and by (10), it follows that CCC(G) is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n = 8 then, by Theorem 4.1 and Theorem 3.1, we get

E(CCC(G)) < LE+(CCC(G)) = 6 < 8 = E(K|V (CCC(G))|).

Also,

LE(CCC(G)) = 9 > 8 = LE(K|V (CCC(G))|).

So, CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic,
Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 12 then, by Theorem 3.1, we get

LE(CCC(G)) =
3(n− 2)(n− 4)

n+ 2
.

We have

n− 3(n− 2)(n− 4)

n+ 2
= −2(n(n− 12) + 2n+ 12)

n+ 2
< 0.

Therefore, LE(K|V (CCC(G))|) < LE(CCC(G)) and so CCC(G) is L-hyperenergetic but not
L-borderenergetic.

By Theorem 4.1 and Theorem 3.1, we also get

E(CCC(G)) < LE+(CCC(G)) =
2(n− 2)(n− 4)

n+ 2
.
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We have

(11) 2(n− 2)(n− 4)

n+ 2
− n =

n2 − 14n+ 16

n+ 2
=

n(n− 16) + 2n+ 16

n+ 2
:= f1(n)

Therefore, for n = 12, we have f1(n) < 0 and so

E(CCC(G)) < LE+(CCC(G)) =
2(n− 2)(n− 4)

n+ 2
< n = LE+(K|V (CCC(G))|).

Thus, if n = 12 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 16 then, by (11), we have f1(n) > 0 and so LE+(CCC(G)) > n = LE+(K|V (CCC(G))|).
Therefore, CCC(G) is Q-hyperenergetic but not Q-borderenergetic. Also,

E(CCC(G)) = n− 4 < n = E(K|V (CCC(G))|)

and so CCC(G) is neither hyperenergetic nor borderenergetic. Thus, if n ≥ 16 then CCC(G)

is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.
Subcase 2.2. n

2 is odd.
If n = 6 then, by Theorem 4.1 and Theorem 3.1, we get

E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 4 < 6 = E(K|V (CCC(G))|).

Therefore, CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n = 10 then, by Theorem 4.1 and Theorem 3.1, we get

LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)) = 10 = LE(K|V (CCC(G))|).

So, CCC(G) is L-bordererenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 14 then, by Theorem 3.1, we get

LE(CCC(G)) =
(n− 4)(3n− 10)

n+ 2
.

We have

n− (n− 4)(3n− 10)

n+ 2
= −2n(n− 14) + 4n+ 40

n+ 2
< 0.

So, LE(K|V (CCC(G))|) < LE(CCC(G)) and so CCC(G) is L-hyperenergetic but not
L-borderenergetic.

By Theorem 4.1 and Theorem 3.1, we also get

E(CCC(G)) < LE+(CCC(G)) =
2(n− 2)(n− 6)

n+ 2
.
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We have

(12) 2(n− 2)(n− 6)

n+ 2
− n =

n2 − 18n+ 24

n+ 2
=

n(n− 18) + 24

n+ 2
:= f2(n).

Therefore, for n = 14, we have f2(n) < 0 and so

E(CCC(G)) < LE+(CCC(G)) =
2(n− 2)(n− 4)

n+ 2
< n = LE+(K|V (CCC(G))|).

Thus, if n = 14 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderener-
getic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. If n ≥ 18 then, by (12),
we have f2(n) > 0 and so LE+(CCC(G)) > n = LE+(K|V (CCC(G))|). Therefore, CCC(G) is
Q-hyperenergetic but not Q-borderenergetic. Also, E(CCC(G)) = n− 2 < n = E(K|V (CCC(G))|)

and so CCC(G) is neither hyperenergetic nor borderenergetic. Thus, if n ≥ 18 then CCC(G)

is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.

Theorem 5.2. Let G = Q4m.

(i) If m = 2, 3, 4 then CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(ii) If m = 5 then CCC(G) is L-borderenergetic but neither hyperenergetic, borderenergetic,
L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.
(iii) If m = 6, 7 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(iv) If m ≥ 8 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.

By [20, Proposition 2.2] we have CCC(G) = K2 ⊔Km−1. Therefore, |V (CCC(G))| = m + 1.
Using (4), we get

(13) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 2m.

If m = 3 then, by Theorem 4.2 and Theorem 3.2, we get

(14) E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 4 < 6 = E(K|V (CCC(G))|).

So, by (13) and (14), CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 5 then, by Theorem 4.2 and Theorem 3.2, we get

LE+(CCC(G)) < E(CCC(G)) < LE(CCC(G)) = 10 = LE(K|V (CCC(G))|).
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So, CCC(G) is L-borderenergetic but neither hyperenergetic, borderenergetic, L-hyperenergetic,
Q-hyperenergetic nor Q-borderenergetic.

If m = 7 then, by Theorem 4.2 and Theorem 3.2, we get

LE+(CCC(G)) = E(CCC(G)) = 12 < 14 = E(K|V (CCC(G))|).

Also,
LE(CCC(G)) = 20 > 14 = LE(K|V (CCC(G))|).

So, CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic,
Q-hyperenergetic nor Q-borderenergetic.

If m ≥ 9 then, by Theorem 4.2 and Theorem 3.2, we get
4(m− 1)(m− 3)

m+ 1
= LE+(CCC(G)) < LE(CCC(G)).

We have
2m− 4(m− 1)(m− 3)

m+ 1
= −2(m(m− 9) + 6)

m+ 1
< 0

and so LE+(K|V (CCC(G))|) = 2m < 4(m−1)(m−3)
m+1 = LE+(CCC(G)) < LE(CCC(G)). Hence,

CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-
borderenergetic. Also,

E(CCC(G)) = 2m− 2 < 2m = E(K|V (CCC(G))|).

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic. Thus, if m ≥ 9 then
CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.
Case 2. m is even.

By [20, Proposition 2.2] we have CCC(G) = 2K1 ⊔Km−1. Therefore, |V (CCC(G))| = m+ 1.
Using (4), we get

(15) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 2m.

If m = 2 then, by Theorem 4.2 and Theorem 3.2, we get

(16) E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 0 < 4 = E(K|V (CCC(G))|).

So, by (15) and (16), CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 4 then, by Theorem 4.2 and Theorem 3.2, we get

(17) E(CCC(G)) < LE+(CCC(G)) < LE(CCC(G)) =
36

5
< 8 = E(K|V (CCC(G))|).

So, by (15) and (17), CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
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If m ≥ 6 then, by Theorem 3.2, we get

LE(CCC(G)) =
6(m− 1)(m− 2)

m+ 1
.

We have

2m− 6(m− 1)(m− 2)

m+ 1
= −4(m2 − 5m+ 3)

m+ 1
= −4(m(m− 6) +m+ 3)

m+ 1
< 0

and so
LE(K|V (CCC(G))|) = 2m <

6(m− 1)(m− 2)

m+ 1
= LE(CCC(G)).

Hence, CCC(G) is L-hyperenergetic but not L-borderenergetic.
By Theorem 4.2 and Theorem 3.2, we also get

E(CCC(G)) < LE+(CCC(G)) =
4(m− 1)(m− 2)

m+ 1
.

We have

(18) 4(m− 1)(m− 2)

m+ 1
− 2m =

2(m2 − 7m+ 4)

m+ 1
=

2(m(m− 8) +m+ 4)

m+ 1
= f(m).

Therefore, for m = 6, we have f(m) < 0 and so

E(CCC(G)) < LE+(CCC(G)) =
4(m− 1)(m− 2)

m+ 1
< 2m = LE+(K|V (CCC(G))|).

Thus, if m = 6 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 8 then, by (18), we have f(m) > 0 and so LE+(CCC(G)) > 2m = LE+(K|V (CCC(G))|).
Therefore, CCC(G) is Q-hyperenergetic but not Q-borderenergetic. Also, E(CCC(G)) = 2m−
4 < 2m = E(K|V (CCC(G))|) and so CCC(G) is neither hyperenergetic nor borderenergetic. Thus,
if n ≥ 8 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic,
borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3. Let G = U(n,m).

(i) If m = 2, 3, 4 and n ≥ 2 or m = 6 and n = 2 then CCC(G) is neither hyperenergetic,
borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(ii) If m = 5 and n = 2 then CCC(G) is L-borderenergetic but neither hyperenergetic,
borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.
(iii) If m = 5 and n = 3, m = 6 and n = 3 or m = 7 and n = 2 then CCC(G) is
L-hyper-energetic but neither hyperenergetic, borderenergetic, L-borderenergetic,
Q-hyperenergetic nor Q-borderenergetic.
(iv) If m = 5, 6 and n ≥ 4; m = 7 and n ≥ 3 or m ≥ 8 and n ≥ 2 then CCC(G) is
L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-border-energetic nor Q-borderenergetic.
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Proof. We shall prove the result by considering the following cases.
Case 1. m is odd and n ≥ 2.

By [20, Proposition 2.3] we have CCC(G) = Kn(m−1)
2

⊔Kn. Therefore, |V (CCC(G))| = n(m+1)
2 .

Using (4), we get

(19) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = mn+ n− 2.

By Theorem 3.3 we get

E(CCC(G)) = mn+ n− 4 < mn+ n− 2.

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic.
If m = 3 and n ≥ 2 then, by Theorem 3.3, we get

LE+(CCC(G)) = LE(CCC(G)) = 4n− 4 < 4n− 2 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if m = 3 and n ≥ 2 then CCC(G) is neither hyperenergetic, bor-
derenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 5 and n = 2 then, by Theorem 4.3 and Theorem 3.3, we get

LE+(CCC(G)) < LE(CCC(G)) = 10 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is L-borderenergetic but neither L-hyperenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if m = 5 and n = 2 then CCC(G) is L-borderenergetic but neither
hyperenergetic, borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 5 and n = 3 then, by Theorem 3.3, we get

LE(CCC(G)) = 20 > 16 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is L-hyperenergetic but not L-borderenergetic. Also,

LE+(CCC(G)) = 12 < 16 = LE+(K|V (CCC(G))|).

Therefore, CCC(G) is neither Q-hyperenergetic nor Q-borderenergetic. Thus, if m = 5 and
n = 3 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 5 and n ≥ 4 then, by Theorem 4.3 and Theorem 3.3, we get

2(2n+ 3)(n− 1)

3
= LE+(CCC(G)) < LE(CCC(G)).

We have

6n− 2− 2(2n+ 3)(n− 1)

3
= −4(n2 − n− 1)

3
= −4(n(n− 4) + 3n− 1)

3
< 0
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and so LE+(K|V (CCC(G))|) = 6n−2 < 2(2n+3)(n−1)
3 = LE+(CCC(G)) < LE(CCC(G)). Therefore,

CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-border-
energetic. Thus, if m = 5 and n ≥ 4 then CCC(G) is L-hyperenergetic and Q-hyperenergetic
but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

If m ≥ 7 and n ≥ 2 then, by Theorem 3.3, we get

LE(CCC(G)) =
m2n2 − 4mn2 +m2n+ 3n2 − 2mn− 2m+ 5n− 2

m+ 1
.

We have

mn+ n− 2− LE(CCC(G)) = −m2n2 − 4mn2 − 4mn+ 3n2 + 4n

m+ 1

= −mn2(m− 7) + 2mn(n− 2) +mn2 + 3n2 + 4n

m+ 1
< 0

and so LE(K|V (CCC(G))|) = mn+n−2 < LE(CCC(G)). Therefore, CCC(G) is L-hyperenergetic
but not L-borderenergetic. By Theorem 4.3 and Theorem 3.3, we also get

n2(m− 1)(m− 3)

m+ 1
= LE+(CCC(G)) < LE(CCC(G)).

Let f1(m,n) = n2(m−1)(m−3)
m+1 − (mn+ n− 2). Then

f1(m,n) =
2 + 2m− 2mn−m2n− n+ 3n2 − 4mn2 +m2n2

m+ 1

=
mn2(m− 11) +mn2 +m2n(n− 2) + 2mn(n− 2) + 2n(3n− 1) + 2(m+ 1)

2(m+ 1)
.

For m = 7 and n = 2 we have f1(m,n) = −2 < 0 and so

LE+(CCC(G)) =
n2(m− 1)(m− 3)

m+ 1
< mn+ n− 2 = LE+(K|V (CCC(G))|).

Therefore, CCC(G) is neither Q-hyperenergetic nor Q-borderenergetic. Thus, if m = 7 and
n = 2 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 7 and n ≥ 3 then f1(m,n) = n(3n−8)+16
8 > 0. Therefore,

LE+(K|V (CCC(G))|) = mn+ n− 2 <
n2(m− 1)(m− 3)

m+ 1
= LE+(CCC(G))

and so CCC(G) is Q-hyperenergetic but not Q-borderenergetic. Thus, if m = 7 and n ≥ 3 then
CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.

Now, for m = 9 and n = 2 we have f1(m,n) = 6
5 > 0. For m = 9 and n ≥ 3 we have

f1(m,n) = 2n(12n−25)+10
5 > 0. For m ≥ 11 and n ≥ 2 we have f1(m,n) > 0. Therefore, for

m ≥ 9 and n ≥ 2 we have

LE+(K|V (CCC(G))|) = mn+ n− 2 <
n2(m− 1)(m− 3)

m+ 1
= LE+(CCC(G))
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and so CCC(G) is Q-hyperenergetic but not Q-borderenergetic. Thus, if m ≥ 9 and n ≥ 2 then
CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.
Case 2. m is even and n ≥ 2.

By [20, Proposition 2.3] we have CCC(G) = Kn(m−2)
2

⊔ 2Kn. Therefore, |V (CCC(G))| =

n(m+2)
2 . Using (4), we get

(20) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = mn+ 2n− 2.

By Theorem 3.3 we get

E(CCC(G)) = 4n− 4 < 4n− 2 = E(K|V (CCC(G))|),

if m = 2. If m ≥ 4 then

E(CCC(G)) = mn+ 2n− 6 < mn+ 2n− 2 = E(K|V (CCC(G))|).

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic.
If m = 2 and n ≥ 2 then, by Theorem 3.3, we get

LE+(CCC(G)) = LE(CCC(G)) = 4n− 4 < 4n− 2.

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if m = 2 and n ≤ 2 then CCC(G) is neither hyperenergetic, bor-
derenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 4 and n ≥ 2 then, by Theorem 3.3, we get

LE+(CCC(G)) = LE(CCC(G)) = 6n− 6 < 6n− 2.

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if m = 4 and n ≤ 2 then CCC(G) is neither hyperenergetic, bor-
derenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 6 and n = 2 then, Theorem 4.3 and Theorem 3.3, we get

LE+(CCC(G)) < LE(CCC(G)) = 12 < 14 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if m = 6 and n = 2 then CCC(G) is neither hyperenergetic, bor-
derenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If m = 6 and n ≥ 3 then, by Theorem 3.3, we get

LE(CCC(G)) = 2n2 + 3n− 2.

We have
8n− 2− (2n2 + 3n− 2) = −n(2n− 5) < 0.
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Therefore,
LE(K|V (CCC(G))|) = 8n− 2 < 2n2 + 3n− 2 < LE(CCC(G))

and so CCC(G) is L-hyperenergetic but not L-borderenergetic. By Theorem 3.3, we also get

LE+(CCC(G)) = 2(n+ 2)(n− 1).

Let g(n) = 2(n+ 2)(n− 1)− (8n− 2). Then g(n) = 2(n(n− 4) + n− 1). Therefore, if n = 3

then g(n) = −2 < 0 and so

LE+(CCC(G)) = 2(n+ 2)(n− 1) < 8n− 2 = LE+(K|V (CCC(G))|).

Therefore, CCC(G) is neither Q-hyperenergetic nor Q-borderenergetic. Thus, if m = 6

and n = 3 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 4 then g(n) > 0 and so

LE+(K|V (CCC(G))|) = 8n− 2 < 2(n+ 2)(n− 1) = LE+(CCC(G)).

Therefore, CCC(G) is Q-hyperenergetic but not Q-borderenergetic. Thus, if m = 6 and n ≥ 4

then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderen-
ergetic, L-borderenergetic nor Q-borderenergetic.

If m ≥ 8 and n ≥ 2 then, by Theorem 4.3 and Theorem 3.3, we get

2n2(m− 2)(m− 4)

m+ 2
= LE+(CCC(G)) < LE(CCC(G)).

We have

mn+ 2n− 2− 2n2(m− 2)(m− 4)

m+ 2
= −4 + 2m−m2n− 4n− 4mn+ 16n2 − 12mn2 + 2m2n2

m+ 2

= −f2(m,n),

where f2(m,n) = mn2(m−12)+m2n(n−2)+mn(m−6)+2n(m−2)+16n2+2m+4
m+2 .

For m = 8 and n = 2 we have f2(m,n) = 6
5 > 0. For m = 8 and n ≥ 3 we have

f2(m,n) = 2
5(12n

2 − 25n+ 5) = 2
5(12n(n− 3) + 11n+ 5) > 0. For m = 10 and n ≥ 2 we have

f2(m,n) = 2(4n2 − 6n + 1) = 2(4n(n − 2) + 2n + 1) > 0. For m ≥ 12 and n ≥ 2 we have
f2(m,n) > 0. Therefore,

LE+(K|V (CCC(G))|) = mn+ 2n− 2 <
2n2(m− 2)(m− 4)

m+ 2
= LE+(CCC(G)) < LE(CCC(G))

and so CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor
Q-borderenergetic. Thus, if m ≥ 8 and n ≥ 2 then CCC(G) is L-hyperenergetic and
Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor
Q-borderenergetic.



112 P. Bhowal and R. K. Nath

Theorem 5.4. Let G = V8n.

(i) If n = 2 then CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-border-energetic, Q-hyperenergetic nor Q-borderenergetic.
(ii) If n = 3, 4 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(iii) If n ≥ 5 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By [20, Proposition 2.4] we have CCC(G) = 2K1⊔K2n−1. Therefore, |V (CCC(G))| = 2n+1.
Using (4), we get

(21) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 4n.

By Theorem 3.4 we get

LE(CCC(G)) =
6(2n− 1)(2n− 2)

2n+ 1
.

We have

4n− 6(2n− 1)(2n− 2)

2n+ 1
= −4(4n2 − 10n+ 3)

2n+ 1
= −4(4n(n− 3) + 2n+ 3)

2n+ 1
< 0

and so LE(K|V (CCC(G))|) = 4n < 6(2n−1)(2n−2)
2n+1 = LE(CCC(G)). Hence, CCC(G) is

L-hyperenergetic but not L-borderenergetic.
By Theorem 4.4 and Theorem 3.4, we also get

E(CCC(G)) < LE+(CCC(G)) =
4(2n− 1)(2n− 2)

2n+ 1
.

We have

(22) 4(2n− 1)(2n− 2)

2n+ 1
− 4n =

4(2n2 − 7n+ 2)

2n+ 1
=

4(2n(n− 5) + 3n+ 2)

2n+ 1
:= g1(n).

Therefore, for n = 3, we have g1(n) < 0 and so

E(CCC(G)) < LE+(CCC(G)) =
4(2n− 1)(2n− 2)

2n+ 1
< 4n = LE+(K|V (CCC(G))|).

Thus, if n = 3 then CCC(G) is L-hyperenergetic but neither hyperenergetic, borderener-
getic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. If n ≥ 5 then, by (22),
we have g1(n) > 0 and so LE+(CCC(G)) > 4n = LE+(K|V (CCC(G))|). Therefore, CCC(G) is Q-
hyperenergetic but not Q-borderenergetic. Also, E(CCC(G)) = 4n− 4 < 4n = E(K|V (CCC(G))|)

and so CCC(G) is neither hyperenergetic nor borderenergetic. Thus, if n ≥ 5 then CCC(G)

is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic nor Q-borderenergetic.
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Case 2. n is even.
By [20, Proposition 2.4] we have CCC(G) = 2K2 ⊔K2n−2. Therefore |V (CCC(G))| = 2n+2.

Using (4), we get

(23) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 4n+ 2.

If n = 2 then, by Theorem 4.4 and Theorem 3.4, we get

(24) E(CCC(G)) = LE+(CCC(G)) = LE(CCC(G)) = 6 < 10 = E(K|V (CCC(G))|).

Therefore, by (23) and (24), we have CCC(G) is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 4 then, Theorem 3.4, we get

E(CCC(G)) = 4n− 2 < 4n+ 2 = E(K|V (CCC(G))|).

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic.
By Theorem 4.4 and Theorem 3.4, we also get

16(n− 1)(n− 2)

n+ 1
= LE+(CCC(G)) < LE(CCC(G)).

We have

(25) 16(n− 1)(n− 2)

n+ 1
− (4n+ 2) =

6(2n2 − 9n+ 5)

n+ 1
=

6(2n(n− 6) + 3n+ 5)

n+ 1
:= g2(n).

Therefore, for n = 4 we have g2(n) < 0 and so

LE+(CCC(G)) =
16(n− 1)(n− 2)

n+ 1
< 4n+ 2 = LE+(K|V (CCC(G))|).

Therefore, CCC(G) is neither Q-hyperenergetic nor Q-borderenergetic. Also,

LE(CCC(G)) =
130

5
= 26 > 18 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is L-hyperenergetic but not L-borderenergetic. Thus, if n = 4 then
CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic,
Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 6 then, by (25), we have g2(n) > 0 and so

LE+(K|V (CCC(G))|) = 4n+ 2 <
16(n− 1)(n− 2)

n+ 1
= LE+(CCC(G)) < LE(CCC(G)).

Therefore, CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic
nor Q-borderenergetic. Thus, if n ≥ 6 then CCC(G) is L-hyperenergetic and Q-hyperenergetic
but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
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Theorem 5.5. Let G = SD8n.

(i) If n = 2, 3 then CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(ii) If n = 5 then CCC(G) is L-hyperenergetic and Q-borderenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic.
(iii) If n = 4 or n ≥ 6 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.

By [20, Proposition 2.5] we have CCC(G) = K4 ⊔K2n−2. Therefore, |V (CCC(G))| = 2n+ 2.
Using (4), we get

(26) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 4n+ 2.

By Theorem 3.5 we get
E(CCC(G)) = 4n < 4n+ 2.

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic.
If n = 3 then, by Theorem 3.5, we get

LE+(CCC(G)) = LE(CCC(G)) = 12 < 14 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if n = 3 then CCC(G) is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L-border-energetic, Q-hyperenergetic nor Q-borderenergetic.

If n = 5 then, by Theorem 4.5 and Theorem 3.5, we get

LE+(K|V (CCC(G))|) = 22 = LE+(CCC(G)) < LE(CCC(G)).

Therefore, CCC(G) is L-hyperenergetic and Q-borderenergetic but neither L-borderenergetic
nor Q-hyperenergetic. Thus, if n = 5 then CCC(G) is L-hyperenergetic and Q-borderenergetic
but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic.

If n ≥ 7 then, by Theorem 4.5 and Theorem 3.5, we get

16(n− 1)(n− 3)

n+ 1
= LE+(CCC(G)) < LE(CCC(G)).

We have

4n+ 2− 16(n− 1)(n− 3)

n+ 1
= −2(6n2 − 35n+ 23)

n+ 1
= −2(6n(n− 7) + 7n+ 23)

n+ 1
< 0.

So, LE+(K|V (CCC(G))|) = 4n+2 < 16(n−1)(n−3)
n+1 = LE+(CCC(G)) < LE(CCC(G)) and so CCC(G)

is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-borderenergetic.
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Thus, if n ≥ 7 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperener-
getic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
Case 2. n is even.

By [20, Proposition 2.5] we have CCC(G) = 2K1⊔K2n−1. Therefore, |V (CCC(G))| = 2n+1.
Using (4), we get

(27) E(K|V (CCC(G))|) = LE+(K|V (CCC(G))|) = LE(K|V (CCC(G))|) = 4n.

By Theorem 3.5 we get

E(CCC(G)) = 4n− 4 < 4n.

Therefore, CCC(G) is neither hyperenergetic nor borderenergetic.
If n = 2 then, by Theorem 4.5 and Theorem 3.5, we get

LE+(CCC(G)) < LE(CCC(G)) =
36

5
< 8 = LE(K|V (CCC(G))|).

Therefore, CCC(G) is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor
Q-borderenergetic. Thus, if n = 2 then CCC(G) is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L-border-energetic, Q-hyperenergetic nor Q-borderenergetic.

If n ≥ 4 then, by Theorem 4.5 and Theorem 3.5, we get

4(2n− 1)(2n− 2)

2n+ 1
= LE+(CCC(G)) < LE(CCC(G)).

We have

4n− 4(2n− 1)(2n− 2)

2n+ 1
= −4(2n2 − 7n+ 2)

2n+ 1
= −4(2n(n− 4) + n+ 2)

2n+ 1
< 0.

Therefore, LE+(K|V (CCC(G))|) = 4n < 4(2n−1)(2n−2)
2n+1 = LE+(CCC(G)) < LE(CCC(G)) and so

CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor
Q-borderener-getic. Thus, if n ≥ 4 then CCC(G) is L-hyperenergetic and Q-hyperenergetic but
neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

We conclude this paper with the following characterization of commuting conjugacy class
graph.

Theorem 5.6. Let G be a finite non-abelian group. Then

(i) CCC(G) is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic,
Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to D8, D12, D2n(n is odd), Q8,
Q12, Q16, U(2,6), U(n,2), U(n,3), U(n,4)(n ≥ 2), V16, SD16 or SD24.
(ii) CCC(G) is L-borderenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to Q20 or U(2,5).
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(iii) CCC(G) is L-hyperenergetic but neither hyperenergetic, borderenergetic,
L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to D16, D20,
D24, D28, Q24, Q28, U(3,5), U(3,6), U(2,7), V24 or V32.
(iv) CCC(G) is L-hyperenergetic and Q-borderenergetic but neither hyperenergetic,
borderenergetic, L-borderenergetic nor Q-hyperenergetic if G is isomorphic to SD40.
(v) CCC(G) is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic,
borderenergetic, L-borderenergetic nor Q-borderenergetic if G is isomorphic to D2n (n is
even, n ≥ 16), Q4m(m ≥ 8), U(n,5)(n ≥ 4), U(n,6)(n ≥ 4), U(n,7)(n ≥ 3), U(n,m) (n ≥ 2 and
m ≥ 8), V8n (n ≥ 5), SD32 or SD8n(n ≥ 6).

Theorem 5.7. Let G be a finite non-abelian group. Then

(i) If G is isomorphic to D2n, Q4m, U(n,m), V8n or SD8n then CCC(G) is neither
hyperenergetic nor borderenergetic.
(ii) If G is isomorphic to D2n(n is even, n ≥ 8), Q4m(m ≥ 6), U(n,5)(n ≥ 3), U(n,6)(n ≥ 3),
U(n,m)(n ≥ 2 and m ≥ 7), V8n(n ≥ 3) or SD8n(n ≥ 4) then CCC(G) is L-hyperenergetic
(iii) If G is isomorphic to Q20 or U(2,5) then CCC(G) is L-borderenergetic.
(iv) If G is isomorphic to D2n(n is even, n ≥ 16), Q4m(m ≥ 8), U(n,5)(n ≥ 4), U(n,6)(n ≥ 4),
U(n,7)(n ≥ 3), U(n,m)(n ≥ 2 and m ≥ 8), V8n(n ≥ 5), SD32 or SD8n(n ≥ 6) then CCC(G) is
Q-hyperenergetic.
(v) If G is isomorphic to SD40 then CCC(G) is Q-borderenergetic.
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[4] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl., 423 (2007)

155-171.

[5] P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite nonabelian groups,

Khayyam J. Math., 6 No. 1 (2020) 27-45.

[6] J. Dutta and R. K. Nath, Spectrum of commuting graphs of some classes of finite groups, Matematika, 33

No. 1 (2017) 87-95.



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 67-118. 117

[7] J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, Mat. Vesnik, 69 No. 3 (2017)

226-230.

[8] J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups,

Khayyam J. Math., 4 No. 1 (2018) 77-87.

[9] W. N. T. Fasfous, R. K. Nath and R. Sharafdini, Various spectra and energies of commuting graphs of

finite rings, Hacet. J. Math. Stat., 49 No. 6 (2020) 1915-1925.

[10] S.C. Gong, X. Li, G.H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math.

Comput. Chem., 74 (2015) 321-332.

[11] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc., 64 (1999) 199-205.

[12] I. Gutman, N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifácioa and S. Radenković, Relation between

energy and Laplacian energy, MATCH Commun. Math. Comput. Chem., 59 (2008) 343-354.

[13] F. Harary and A. J. Schwenk, Which graphs have integral spectra?, Graphs and Combin., Lect. Notes

Math., 406 (1974), Springer-Verlag, Berlin, 45-51.

[14] M. Herzog, M. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups. Comm.

Algebra, 37 No. 10 (2009) 3369-3387.

[15] S. Kirkland, Constructably Laplacian integral graphs, Linear Algebra Appl., 423 (2007) 3-21.

[16] J. Liu, and B. Liu, On the relation between energy and Laplacian energy, MATCH Commun. Math. Comput.

Chem., 61 (2009) 403-406.

[17] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199 (1994) 381-389.

[18] A. Mohammadian, A. Erfanian, D. G. M. Farrokhi and B. Wilkens, Triangle-free commuting conjugacy

class graphs. J. Group Theory, 19 (2016) 1049-1061.

[19] R. K. Nath, Various spectra of commuting graphs n-centralizer finite groups, International Journal of

Engineering Science and Technology, accepted for publication.

[20] M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graph of finite CA-groups, Khayyam J.

Math., 6 No. 1 (2020) 108-118.
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