A Note on Artinian Primes and Second Modules

Document Type : Research Paper


Department of Mathematics, Payame Noor University, Tehran, Iran


 Prime submodules and artinian prime modules are characterized. Furthermore, some previous results on prime modules and second modules are generalized.


[1] F. Anderson and K. Fuller, Rings and categories of modules, Graduate Text in Mathematics, Springer-
Verlag, Berlin- New York, 1974.
[2] A. Azizi and H. Sharif, On Prime Submodules, Honam, Mathematical Journal, 21(1) (1999), 1-12
[3] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra. Addision-Wesley Publishing Com-
pany, Inc, 1969.
[4] J. Dauns, Prime Modules, J. Reine angew Math 298 (1978), 156-181.
[5] E. H. Feller and E. W. Swokowski, Prime Modules, Canad. J. Math. 17 (1965), 1041-1052.
[6] T. W. Hungerford, Algebra, Springer-Verlog, New York Inc, 1989.
[7] C. P. Lu, Prime Submodules of Modules, Comm. Math. Univ. Sancti. Pauli, 33 (1984), 61-69
[8] C. P. Lu, Spectra of modules, Comm-Algebra, 23 (10), (1995), 3741-3752.
[9] R. L. Mccaslad and M. E. Moore, Prime Submodules, Comm. Algebra, 20 (6) (1992), 1803-1817.
[10] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1992.
[11] S. Namazi and Y. Sharifi, Catenary Modules, Acta Math, Hungarica, 85 (3) (1999), 211-218.
[12] R. Y. Sharp, A Method for the study of artinian modules, with an application to asymtotic behavior, math.
Sci. Res. Ins. Publ. 15 (1989), 443-465,Springer-Verlag
[13] R. Y. Sharp, Steps in commutative Algebra, Cambridge University Press 1990.
[14] Y. Tiras and M. Alkan, Prime modules and submodules, Comm. Algebra, 31 (11) (2003), 5253-5261.