The notion of $f$-derivations of UP-algebras is introduced, some useful examples are discussed, and related properties are investigated. Moreover, we show that the fixed set and the kernel of $f$-derivations are UP-subalgebras of UP-algebras,and also give examples to show that the two sets are not UP-ideals of UP-algebras in general.

[1] H. A. S. Abujabal, N. O. Al-shehri, Some results on derivations of BCI-algebras, J. Nat. Sci. Math. 46 (no. 1&2) (2006), 13–19. [2] H. A. S. Abujabal, N. O. Al-shehri, On left derivations of BCI-algebras, Soochow J. Math. 33 (no. 3) (2007), 435–444. [3] A. M. Al-roqi, On generalized (α,β)-derivations in BCI-algebras, J. Appl. Math. Inform. 32 (no. 1–2) (2014), 27–38. [4] N. O. Al-shehri, S. M. Bawazeer, On derivations of BCC-algebras, Int. J. Algebra 6 (no. 32) (2012), 1491– 1498. [5] L. K. Ardekani, B. Davvaz, On generalized derivations of BCI-algebras and their properties, J. Math. 2014 (2014), Article ID 207161, 10 pages. [6] S. M. Bawazeer, N. O. Alshehri, R. S. Babusail, Generalized derivations of BCC-algebras, Int. J. Math. Math. Sci. 2013 (2013), Article ID 451212, 4 pages. [7] Q. P. Hu, X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983), 313–320. [8] A. Iampan, A new branch of the logical algebra: UP-algebras, Manuscript submitted for publication, April 2016. [9] Y. Imai, K. Is´ eki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (no. 1) (1966), 19–22. [10] K. Is´ eki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (no. 1) (1966), 26–29. [11] M. A. Javed, M. Aslam, A note on f-derivations of BCI-algebras, Commun. Korean Math. Soc. 24 (no. 3) (2009), 321–331. [12] Y. B. Jun, X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176. [13] S. Keawrahun, U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (no. 2) (2011), 39–44. [14] K. J. Lee, A new kind of derivation in BCI-algebras, Appl. Math. Sci. 7 (no. 84) (2013), 4185–4194. [15] P. H. Lee, T. K. Lee, On derivations of prime rings, Chinese J. Math. 9 (1981), 107–110. [16] S. M. Lee, K. H. Kim, A note on f-derivations of BCC-algebras, Pure Math. Sci. 1 (no. 2) (2012), 87–93. [17] G. Muhiuddin, A. M. Al-roqi, On (α,β)-derivations in BCI-algebras, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 403209, 11 pages. [18] G. Muhiuddin, A. M. Al-roqi, On t-derivations of BCI-algebras, Abstr. Appl. Anal. 2012 (2012), Article ID 872784, 12 pages. [19] G. Muhiuddin, A. M. Al-roqi, On generalized left derivations in BCI-algebras, Appl. Math. Inf. Sci. 8 (no. 3) (2014), 1153–1158. [20] G. Muhiuddin, A. M. Al-roqi, Y. B. Jun, Y. Ceven, On symmetric left bi-derivations in BCI-algebras, Int. J. Math. Math. Sci. 2013 (2013), Article ID 238490, 6 pages. [21] F. Nisar, Characterization of f-derivations of a BCI-algebra, East Asian Math. J. 25 (no. 1) (2009), 69–87. [22] F. Nisar, On F-derivations of BCI-algebras, J. Prime Res. Math. 5 (2009), 176–191. [23] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. [24] C. Prabpayak, U. Leerawat, On derivation of BCC-algebras, Kasetsart J. (Nat. Sci.) 43 (2009), 398–401. [25] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (no. 1) (2009), 54–57. [26] K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-algebras, Korean J. Math. 24 (no. 3) (2016), 345–367. [27] J. Zhan, Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 2005 (2005), 1675–1684.