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ABSTRACT. The notion of f-derivations of UP-algebras is introduced, some useful examples
are discussed, and related properties are investigated. Moreover, we show that the fixed set
and the kernel of f-derivations are UP-subalgebras of UP-algebras, and also give examples to

show that the two sets are not UP-ideals of UP-algebras in general.

1. INTRODUCTION AND PRELIMINARIES

Among many algebraic structures, algebras of logic form important class of algebras. Exam-
ples of these are BCK-algebras [9], BCI-algebras [10], BCH-algebras [7], KU-algebras [25], SU-
algebras [13] and others. They are strongly connected with logic. For example, BCI-algebras
introduced by Iséki [I0] in 1966 have connections with BCI-logic being the BCI-system in
combinatorial logic which has application in the language of functional programming. BCK

and BCl-algebras are two classes of logical algebras. They were introduced by Imai and Iséki
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[9, 10] in 1966 and have been extensively investigated by many researchers. It is known that
the class of BCK-algebras is a proper subclass of the class of BClI-algebras.

In the theory of rings and near rings, the properties of derivations is an important topic to
study [23, [15]. In 2004, Jun and Xin [12] applied the notions of rings and near rings theory to
BCl-algebras and obtained some properties. Several researches were conducted on the general-
izations of the notion of derivations and application to many logical algebras such as: In 2005,
Zhan and Liu [27] introduced the notion of left-right (right-left) f-derivations of BCI-algebras.
In 2006, Abujabal and Al-shehri [I] investigated some fundamental properties and proved
some results on derivations of BCI-algebras. In 2007, Abujabal and Al-shehri [2] introduced
the notion of left derivations of BCI-algebras. In 2009, Javed and Aslam [I1] investigated some
fundamental properties and established some results of f-derivations of BCI-algebras. Nisar
[22] introduced the notions of right F-derivations and left F-derivations of BCI-algebras. Nisar
[21] characterized f-derivations of BCI-algebras. Prabpayak and Leerawat [24] studied the no-
tions of left-right (right-left) derivations of BCC-algebras. In 2012, Al-shehri and Bawazeer
[4] introduced the notion of left-right (right-left) ¢-derivations of BCC-algebras. Lee and Kim
[16] considered the properties of f-derivations of BCC-algebras. Muhiuddin and Al-roqi [18]
introduced the notion of t-derivations of BCI-algebras. Muhiuddin and Al-roqi [17] introduced
the notion of (regular) («a, 3)-derivations of BCI-algebras. In 2013, Bawazeer, Al-shehri and
Babusal [6] introduced the notion of generalized derivations of BCC-algebras. Lee [14] intro-
duced a new kind of derivations of BCI-algebras. Muhiuddin, Al-roqi, Jun and Ceven [20)]
introduced the notion of symmetric left bi-derivations of BCl-algebras. In 2014, Al-roqi [3]
introduced the notion of generalized (regular) («, 3)-derivations of BCI-algebras. Muhiuddin
and Al-roqi [19] introduced the notion of generalized left derivations of BCI-algebras. Ardekani
and Davvaz [5] introduced the notion of ( f, g)-derivations of BCI-algebras. In 2016, Sawika, In-
tasan, Kaewwasri and Iampan [26] introduced the notions of (I, r)-derivations, (r,[)-derivations
and derivations of UP-algebras and investigated some related properties.

The notion of derivations play an important role in studying the many logical algebras. In
this paper, we introduce the notion of f-derivations of UP-algebras which is the generalization
of the notion of derivations [26], some useful examples are discussed, and related properties

are investigated.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1. [§] An algebra A = (4;-,0) of type (2,0) is called a UP-algebra if it satisfies

the following axioms: for any z,y,z € A,

(UP-1): (y-2)- ((z-y)-(z-2)) =0,
(UP-2): 0-z =z,
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(UP-3): z-0=0, and
(UP-4): z-y =y -z =0 implies z = y.

Example 1.1. [8] Let X be a universal set. Define a binary operation - on the power set of
X by putting A-B=BNA =ANB=B-A foral A,B € P(X). Then (P(X);-,0) is a
UP-algebra and we shall call it the power UP-algebra of type 1.

Example 1.2. [8] Let X be a universal set. Define a binary operation * on the power set of X
by putting Ax B=BUA" = A"UB for all A,B € P(X). Then (P(X);*,X) is a UP-algebra
and we shall call it the power UP-algebra of type 2.

In what follows, let A denotes a UP-algebra unless otherwise specified. The following

proposition is very important for the study of UP-algebras.

Proposition 1.1. [§] In a UP-algebra A, the following properties hold: for any z,y,z € A,
(1) x-x =0,
(2) x-y=0andy-z=0 implyx-z=0,
(3) -y =0 implies (z-x) - (z-y) =0,
(4) -y =0 implies (y-z)-(z-2) =0,
(5) z-(y-x) =0,
(6) (y-x)-x=0 if and only if x =y -z, and

(7) x-(y-y)=0.

On a UP-algebra A = (A;-,0), we define a binary relation < on A [§] as follows: for all
x,y € A,

x <y if and only if z -y = 0.

Definition 1.2. [8] A nonempty subset B of A is called a UP-ideal of A if it satisfies the

following properties:

(1) the constant 0 of A is in B, and

(2) for any z,y,z € A,x-(y-z) € Band y € B imply z -z € B.
Clearly, A and {0} are UP-ideals of A.

Theorem 1.3. [§] Let A be a UP-algebra and B a UP-ideal of A. Then the following state-
ments hold: for any x,a,b € A,

(1) ifb-x € B and b € B, then © € B. Moreover, ifb- X C B and b € B, then X C B,
(2) if b € B, then x-b € B. Moreover, if b € B, then X -b C B, and
(3) ifa,b€ B, then (b- (a-z)) -z € B.
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Definition 1.3. [8] Let (A4;-,0) and (A’;/,0") be UP-algebras. A mapping f from A to A’ is

called a UP-homomorphism if

fla-y)=f(x) ' fy) for all z,y € A.

A UP-homomorphism f: A — A’ is called a UP-endomorphism of A if A’ = A.

Theorem 1.4. [§] Let (A;-,04) and (B;*,0p) be UP-algebras and let f: A — B be a UP-

homomorphism. Then the following statements hold:

(1) f(04) =0p,

(2) for any x,y € A, if x <y, then f(x) < f(y),

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In partic-
ular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image f~1(D) is a UP-subalgebra of A.
In particular, Ker(f) is a UP-subalgebra of A,

(5) if C is a UP-ideal of A, then the image f(C) is a UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image f~1(D) is a UP-ideal of A. In partic-
ular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) = {04} if and only if f is injective.

Definition 1.4. [26] For any =,y € A, we define a binary operation A on A by zAy = (y-x)- .

Definition 1.5. [26] A UP-algebra A is called meet-commutative if © Ay = y A x for all
x,y € A, that is, (y-x)-x = (z-y) -y for all z,y € A.

Proposition 1.2. [26] In a UP-algebra A, the following properties hold: for any x € A,

(1) 0Nz =0,
(2) N0 =0, and
(3) x Nz = x.

2. MAIN RESULTS

In this section, we introduce the notions of (I,r)-f-derivations, (r,[)-f-derivations, and
f-derivations of UP-algebras, and study the fixed set and the kernel of (I,r)-f-derivations,

(r,1)-f-derivations, and f-derivations.

Definition 2.1. Let f be a UP-endomorphism of A. A self-map dy: A — A is called an
(I,7)-f-derivation of A if it satisfies the identity d¢(x -y) = (df(x) - f(y)) A (f(x) - df(y)) for
all z,y € A. Similarly, a self-map dy: A — A is called an (r,1)-f-derivation of A if it satisfies
the identity d¢(z - y) = (f(x) - d¢(y)) A (dg(z) - f(y)) for all z,y € A. Moreover, if ds is both

an (l,r)-f-derivation and an (r,1)-f-derivation of A, it is called an f-derivation of A.
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By using Microsoft Excel, we have all examples.

Example 2.1. Let A = {0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

NSO N NN

0 1 3
01 3
00 3
01 3
01 0

w N = O

Then (A;-,0) is a UP-algebra. We define a self-map f: A — A as follows:
f(0) =0, f(1) =0,f(2) =1 and f(3) = 3.
Then f is a UP-endomorphism. We define a self-map dy: A — A as follows:
d¢(0) =0,ds(1) =0,d¢(2) =1 and ds(3) = 0.
Then dy is an f-derivation of A.

Proposition 2.1. Fach UP-endomorphism f of A is its f-derivation.

Proof. 1t follows from Proposition |

Definition 2.2. An (I, r)-f-derivation (resp. (r,1)- f-derivation, f-derivation) d¢ of A is called
regular if dg(0) = 0.

Theorem 2.2. In a UP-algebra A, the following statements hold:

(1) every (l,r)-f-derivation of A is regular, and
(2) every (r,1)-f-derivation of A is regular.

Proof. (1) Assume that dy is an ([, r)- f-derivation of A. Then

(By UP-3) df(0) = ds(0-0)
= (df(0) - £(0)) A (£(0) - dg(0))
(By Theorem = (ds(0) - 0) A (0-ds(0))
(By UP-2 and UP-3) =0Ady(0)
(By Proposition =0.

Hence, d; is regular.
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(2) Assume that dy is an (r,[)- f-derivation of A. Then

(By UP-3) dy(0) = ds(0-0)
= (f(0) - ds(0)) A (ds(0) - £(0))
(By Theorem = (0-ds(0)) A (ds(0) - 0)
(By UP-2 and UP-3) =ds(0) A O
(By Proposition =0.

Hence, dy is regular. O

Corollary 2.3. Fvery f-derivation of A is reqular.

Theorem 2.4. In a UP-algebra A, the following statements hold:
(1) if dg is an (I,7)-f-derivation of A, then d¢(x) = f(x) Ads(x) for all x € A, and
(2) if dy is an (r,1)-f-derivation of A, then d¢(x) = ds(x) A f(x) for all x € A.

Proof. (1) Assume that d¢ is an (l,r)-f-derivation of A. Then, for all z € A,

(By UP-2) dy(x) = dg(0 - )

= (df(0) - f(z)) A (f(0) - dy(x))
(By Theorem [L.4][(1)] and =(0- f(z))A(0-ds(z))
(By UP-2) = f(z) Ady(z).

(2) Assume that dy is an (r,1)- f-derivation of A. Then, for all x € A,

(By UP-2) dy(x) = dg(0 - )
= (f(0) - dy(2)) A (ds(0) - f(z))
(By Theorem [L.4][(1)] and =(0-ds(z)) A (0 f(z))
(By UP-2) =ds(x) A f(z).
|

Corollary 2.5. If ds is an f-derivation of A, then ds(x) = ds(x) A f(x) = f(x) Nds(x) for
all x € A.

Proposition 2.2. Let dy be an (I,7)-f-derivation of A. Then the following properties hold:
for any z,y € A,
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(1) f(zx) < dg(x),
(2) dg(z) - f(y) < ds(z-y),

(3) if f(df(x)) = dy(x) or ds(df(x)) = f(z), then df(x - df(x)) =0,

(4) if fdg(x)) = ds(x) or dy(ds(x)) = f(x), then dy(ds(z) - x) =0,

(5) if dy(f(x)) = f(z) or f(f(x)) = df(x), then dy(x - f(x)) =0, and

(6) if ds(f(x)) = f(x) Of“f( (2)) = dy(x), then dg(f(x) - x) = 0.
Proof. (1) For all z € A,
(By Theorem f(@)-dp(x) = f(z) - (f(2) Ads(x))

= f(x) - ((ds(z) - f(2)) - f())

(By Proposition =0.

Hence, f(x) < df(x) for all x € A.
(2) For all z,y € A,

(dy(@) - f(y) - dp(z - y) = (dy(x) - f(y)) - ((dyp(2) - f()) A (F (@) - df(y)))
= (ds(x) - f(y)) - (f(2) - ds(y)) - (ds(2) - f(y))) - (df () - F(y)))
(By Proposition =0.

Hence, df(x) - f(y) < ds(x-y) for all z,y € A.
(3) For all x € A, if f(ds(x)) = ds(x), then

dy(z - dy(x)) = (dy(z) - f(ds(2))) A (f(z) - dp(dy ()
= (dy(@) - dg(2)) A (f(2) - ds(ds(2)))
(By Proposition =0 (f(z) - dp(d(2)))
(By Proposition =0.

If de(ds(x)) = f(x), then

dy(x - dy(x)) = (df(x) - f(ds(2))) A (f(2) - dp(dy(x)))
= (dy(x) - f(ds(2))) A (f(2) - f(2))
(dp(z) - f(d(z))) NO

0.

(By Proposition
(By Proposition
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(4) For all x € A, if f(ds(x)) = ds(x), then

dy(ds(x) - x) = (dy(ds(2)) - f(2)) N (f(df(2)) - dy(z))

(By Proposition = (d¢(ds(x)) - f(x)) AO
(By Proposition =0.

If dg(ds(x)) = f(x), then

(By Proposition =0A(f(df(z))-d¢(x))
(By Proposition =0.

(5) For all x € A, if d¢(f(x)) = f(x), then

(By Proposition = (d¢(x) - f(f(x))) AO
(By Proposition =0.

It £(f(2)) = dy(x), then

(By Proposition =0A(f(z) de(f(x)))
(By Proposition =0.

(6) For all x € A, if d¢(f(x)) = f(x), then

(By Proposition =0A(f(f(x)) ds(x))
(By Proposition =0.
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If f(f(x)) =d¢(z), then

(By Proposition = (ds(f(x))- f(x))AO
(By Proposition =0.
|

Proposition 2.3. Let dy be an (r,1)-f-derivation of A. Then the following properties hold:
for any x,y € A,

(1) f(z)-ds(y) < ds(z-y),

(2) if f(d(x)) =ds(x) or ds(ds(x)) = f(x), then d¢(x - df(x)) =0,
(3) if f(df(x)) = dy(x) or df(df(x)) = f(z), then df(df(x) - 2) =0,
(4) if ds(F(@)) = f(@) or f((x)) = ds(x), then dy(z - f(x)) =0, and
(5) if dy(f(x)) = f(z) or f(f(2)) = df(x), then d;(f(z) - z) = 0.

Proof. (1) For all 2,y € A,
(f(x) - dp(y)) - dp(z - y) = (f(z) - ds(y)) - (f(2) - dp (y)) A (d (@) - [(3)))
= (f(2) - ds(y)) - (((dy (@) - f(y) - (f (@) - ds(y))) - (f(2) - d ()
(By Proposition =0.

Hence, f(x) - ds(y) < ds(x-y) for all z,y € A.
(2) For all x € A, if f(ds(x)) = ds(x), then

dy(x-d(x)) = (f(x) - dy(ds(2))) A (dy(x) - fds(2)))

(By Proposition = (f(z)-dg(ds(z))) AO
(By Proposition =0.
If dy(dg(x)) = f(z), then
d(x-dg(x)) = (f(x) - dp(ds(x))) A (dy(z) - fdf(2)))
= (f(@) - f(2)) A (dy(z) - fds(2)))
(By Proposition =0 A (dy(x) - f(df()))
(By Proposition

I
e



10 Alg. Struc. Appl. Vol. 3 No. 2 (2016) 1-20.

(3) For all x € A, if f(ds(x)) = ds(x), then

dp(dy(z) - x) = (f(dy(2)) - dg(x)) A (dy(ds()) - f(x))
= (df(x) - dy(x)) A (df(df(2)) - f(z))
(By Proposition — 0 A (dg(ds(z)) - f(2))
(By Proposition = 0.

If de(ds(x)) = f(x), then

(By Proposition = (f(ds(x)) - ds(x)) ANO
(By Proposition =0.

(4) For all x € A, if d¢(f(x)) = f(x), then

(By Proposition =0A(df(x) - f(f(x)))
(By Proposition =0.

It £(f(2)) = dy(x), then

(By Proposition = (f(x)-d¢(f(x))) ANO
(By Proposition =0.

(5) For all x € A, if d¢(f(x)) = f(x), then

(By Proposition = (f(f(x))-ds(x)) AO
(By Proposition =0.
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If f(f(2)) = ds(x), then
dp(f(x)-2) = (F(f(2)) - ds(@) A (dy(F () - F(2))
= (df(@) - ds(0)) A (dg(F(2)) - (@)

(By Proposition =0A (df(f(z)) - f(2))
(By Proposition =0.
|

Definition 2.3. A UP-ideal B of A is called f-invariant (with respect to an (I, r)- f-derivation
(resp. (r,1)-f-derivation, f-derivation) dy of A) if df(B) C B.

Example 2.6. Let A = {0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

NSO N NN

01 3
01 3
0 0 3
01 3
01 0

w N = O

Then (A;-,0) is a UP-algebra. We define a self-map f: A — A as follows:
F(0) = 0,7(1) = 0, /(2) = 1 and f(3) = 3.
Then f is a UP-endomorphism. We define a self-map dy: A — A as follows:
df(0) =0,ds(1) =0,ds(2) =1 and dg(3) = 0.
Then dy is an f-derivation of A. Let B = {0,1,2} and C = {0,1,3}. Then B and C are

UP-ideals of A and it follows that they are f-invariants with respect to an f-derivation dy of
A.

Theorem 2.7. Fvery ideal of A with containing the endomorphic image of f is f-invariant

with respect to any (1, r)-f-derivation of A.

Proof. Assume that B is an ideal of A and d; is an (I, r)- f-derivation of A. Let y € d¢(B).
Then y = dy(x) for some x € B. By Proposition we obtain f(z) < dg(x); that is,
f(x)-ds(x) =0. Thus f(x) -y = f(z)-dsf(x) =0 € B. Since f(B) C B, we have f(z) € B.
It follows from Theorem that y € B. Hence, df(B) C B, which implies that B is

f-invariant. O
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Corollary 2.8. Every ideal of A with containing the endomorphic image of f is f-invariant

with respect to any f-derivation of A.

Definition 2.4. Let df be an (I,7)- f-derivation (resp. (r,[)-f-derivation, f-derivation) of A.
We define a subset Kerg,(A4) of A by

Kerq,(A) = {z € A| dy(x) = 0}.

Theorem 2.9. In a UP-algebra A, the following statements hold:
(1) if dy is an (l,7)-f-derivation of A, then y AN x € Kery,(A) for all y € Kerq,(A) and
x €A, and
(2) if dy is an (r,1)-f-derivation of A, then y Az € Kerg,(A) for all y € Kerq,(A) and
x € A

Proof. (1) Assume that dy is an (I, 7)-f-derivation of A. Let y € Kery,(A) and € A. Then
d¢(y) = 0. Thus

(By UP-3) = (dy(z-y)- f(y)) NO
(By Proposition =0.

Hence, y A x € Kerg, (4).
(2) Assume that dy is an (r,[)- f-derivation of A. Let y € Kergq,(A) and z € A. Then dy(y) = 0.
Thus

de(yNx) =ds((z-y)-y)
= (f(z-y)-ds(y) ANdg(z-y) - f(y))
= (f(z-y)-0)A(ds(z-y)- f(y))

(By UP-3) =0A(df(z-y)- f(y))
(By Proposition =0.

Hence, y Az € Kerg,(A4). O

Corollary 2.10. If dy is an f-derivation of A, then y A x € Kerq,(A) for all y € Kerg, (A)
and x € A.

Give an example of conflict that z Ay ¢ Kerg, (A) for all y € Kerg,(A) and x € A in general.
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Example 2.11. Let A ={0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

01 2 3
0j0 1 2 3
110 0 0 3
210 0 0 3
3101 2 0

Then (A;-,0) is a UP-algebra. Let 14 be an identity map on A. Then 14 is a UP-

endomorphism. We define a self-map dy,: A — A as follows:
dlA(O) = O,dlA(l) = O,dlA(Q) =2 and dlA(3) =3.

Then dy, is an f-derivation of A and so Kery, , (A) = {0,1}. Thus 2N 1 = 2 ¢ Kerg, , (A)
when 1 € Kerg, (A) and 2 € A.

Theorem 2.12. In a meet-commutative UP-algebra A, the following statements hold:

(1) if d¢ is an (I,r)-f-derivation of A and for any x,y € A is such that y < x and
y € Kerg, (A), then z € Kerg, (A), and

(2) if dy is an (r,1)-f-derivation of A and for any x,y € A is such that y < x and
y € Kery,(A), then z € Kerg, (A).

Proof. (1) Assume that d¢ is an ([, 7)- f-derivation of A. Let z,y € A be such that y <z and
y € Kerg, (A). Then y -z =0 and dy(y) = 0. Thus

(By UP-2) dp(x) = (0 - x)

(By UP-3) = (ds(z-y)- f(y)) NO
(By Proposition =0.

Hence, = € Kerg, (A).
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(2) Assume that d; is an (r,[)-f-derivation of A. Let z,y € A be such that y < z and
y € Kerg,(A). Then y -z =0 and dy(y) = 0. Thus

(By UP-2) dy(x) = dys(0- )
=ds((y-x) - )
=ds((z-y)-y)
= (f(z-y) - ds(y)) A (dp(x-y) - f(y))
= (f(z-y)-0) A (ds(z-y)- fy))

(By UP-3) = 0N (ds(z-y)- f(y))
(By Proposition =0.

Hence, = € Kerg,(A). O

Corollary 2.13. If dy is an f-derivation of a meet-commutative UP-algebra A and for any
z,y € A is such that y < x and y € Kerg,(A), then x € Kerg,(A).

Theorem 2.14. In a UP-algebra A, the following statements hold:

(1) if dy is an (I,7)-f-derivation of A, then y -z € Kerq,(A) for all x € Kerq,(A) and
y €A, and

(2) if dy is an (r,1)-f-derivation of A, then y -z € Kerq,(A) for all x € Kerg,(A) and
y e A.

Proof. (1) Assume that dy is an (I, r)-f-derivation of A. Let z € Kerq,(A) and y € A. Then
d¢(z) = 0. Thus

df(y - x) = (dp(y) - f(x)) A (f(y) - dy())
= (ds(y) - f(2)) A (f(y) - 0)

(By UP-3) = (dy(y) - f(2)) N O
(By Proposition =0.

Hence, y - = € Kerg, (A).
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(2) Assume that dy is an (7, [)- f-derivation of A. Let z € Kery,(A) and y € A. Then dy(x) = 0.
Thus

di(y-z) = (f(y) - dp(z)) A(ds(y) - f(2))
= (f(y) - 0) A (ds(y) - f(z))

(By UP-3) =0 (ds(y) - f(x))
(By Proposition =0.

Hence, y - = € Kerg,(A4). O

Corollary 2.15. If dy is an f-derivation of A, then y-x € Kery,(A) for all v € Kerg,(A)
and y € A.

Example 2.16. From Example we have Kerq,(A) = {0,1,3}. Then 3-2 =2 ¢ Kerg,(A)
when 3 € Kerg,(A) and 2 € A.

Theorem 2.17. In a UP-algebra A, the following statements hold:
(1) if dy is an (I, 7)-f-derivation of A, then Kerq,(A) is a UP-subalgebra of A, and
(2) if dy is an (r,1)-f-derivation of A, then Kerq,(A) is a UP-subalgebra of A.

Proof. (1) Assume that dy is an (I, )- f-derivation of A. By Theorem we have d¢(0) =0
and so 0 € Kerg, (A) # 0. Let 2,y € Kerg,(A). Then dy(z) = 0 and dy(y) = 0. Thus

dy(x-y) = (dy(z) - f(y) A (f(2) - df(y))
=(0-Fw) A (f(z)-0)

(By UP-2 and UP-3) = f(y)AO
(By Proposition =0.

Hence, z - y € Kerg, (A), so Kerg,(A) is a UP-subalgebra of A.
(2) Assume that dy is an (r,[)- f-derivation of A. By Theorem we have d¢(0) = 0 and
so 0 € Kerg, (A) # 0. Let x,y € Kerg,(A). Then dy(x) =0 and dy(y) = 0. Thus

di(z-y) = (f(x) - ds(y)) A (ds(2) - f(y))
= (f()-0) A0 F(y))

(By UP-2 and UP-3) =0A f(y)
(By Proposition =0.

Hence, z - y € Kerg, (A), so Kerg,(A) is a UP-subalgebra of A. O
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Corollary 2.18. If dy is an f-derivation of A, then Kery,(A) is a UP-subalgebra of A.
Give an example of conflict that Kergy, (A) is not a UP-ideal of A in general.

Example 2.19. Let A ={0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

01 2 3
012 3
0000
010 3
0120

w N = O

Then (A;-,0) is a UP-algebra. Let 14 be an identity map on A. Then 14 is a UP-

endomorphism. We define a self-map dy,: A — A as follows:
dlA(O) = O,dlA(l) = O,dlA(Q) =2 and dlA(3) =0.

Then di, is an (I,r)-14-derivation of A and Kerg, , (A) = {0,1,3}. Since 0-(1-2) =0 €
Kerg, , (A),1 € Kerg, ,(A) but 0-2 = 2 ¢ Kergy, , (A), we conclude that Kerq, , (A) is not a
UP-ideal of A.

Definition 2.5. Let dy be an (I,7)- f-derivation (resp. (r,[)-f-derivation, f-derivation) of A.
We define a subset Fixg,(A) of A by

Fixq, (A) = {z € A| ds(z) = f(z)}.

Theorem 2.20. In a UP-algebra A, the following statements hold:

(1) if dy is an (I, 7)-f-derivation of A, then Fixq,(A) is a UP-subalgebra of A, and
(2) if dy is an (r,1)-f-derivation of A, then Fixq,(A) is a UP-subalgebra of A.

Proof. (1) Assume that d; is an (I, r)- f-derivation of A. By Theorem and we
have dy(0) = 0 = f(0) and so 0 € Fixg,(A4) # 0. Let x,y € Fixq,(A). Then dy(x) = f(z) and

ds(y) = f(y). Thus
dp(z-y) = (ds(x) - f(y) A (f(x) - ds(y))
= (f(@)- f) A (f(@)- fy))
= flz-y) A flz-y)
(By Proposition = f(z-y).

Hence, = -y € Fix4(A), so Fixy(A) is a UP-subalgebra of A.
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(2) Assume that dy is an (r,1)- f-derivation of A. By Theorem and we have
ds(0) = 0 = f(0) and so 0 € Fixq,(A) # 0. Let z,y € Fixy,(A). Then dy(z) = f(x) and

ds(y) = f(y). Thus

df(x-y) = (f(x) - d(y)) A (ds(2) - F(y))
= (f(x) - fW) A (f(z)- fy))
=fl@-y) AN flz-y)

(By Proposition = f(z-y).

Hence, z - y € Fixg, (A), so Fixq(A) is a UP-subalgebra of A. O

Corollary 2.21. Ifdy is an f-derivation of A, then Fixq,(A) is a UP-subalgebra of A.
Give an example of conflict that Fixg,(A) is not a UP-ideal of A in general.

Example 2.22. Let A ={0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

01 2 3
0j0 1 2 3
110 0 0 O
2101 0 3
3101 2 0

Then (A;-,0) is a UP-algebra. Let 14 be an identity map on A. Then 14 is a UP-

endomorphism. We define a self-map dyi,: A — A as follows:
dlA(O) == O,dlA(l) == 1,d1A(2) =2 and dlA(3) =0.

Then dy, is an (I,7)-1a-derivation of A and Fixq, , (A) = {0,1,2}. Since 2-(1-3) =0 €
Fixg, , (4),1 € Fixg, , (A) but 2-3 = 3 ¢ Fixg,  (A4), we conclude that Fixg, (A) is not a
UP-ideal of A.

Theorem 2.23. In a UP-algebra A, the following statements hold:

(1) if dy is an (I, 7)-f-derivation of A, then x Ay € Fixy,(A) for all z,y € Fixq,(A), and
(2) if dy is an (r,1)-f-derivation of A, then x Ny € Fixq,(A) for all x,y € Fixg,(A).
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Proof. (1) Assume that dy is an (I, 7)-f-derivation of A. Let x,y € Fixq,(A). Then dy(z) =
f(z) and d¢(y) = f(y). By Theorem we get df(y - ) = f(y - ). Thus

di(z Ny) =df((y - z) - )
= (ds(y-z) - f(@) A (f(y-z)-dp(z))
=(fly-z) - f(@) A (fly-=)- f(z))

(By Proposition = fly-z)- f(x)
=f((y-z)- =)
= [z Ay).

Hence, x Ay € Fixg, (A).
(2) Assume that dy is an (r,[)- f-derivation of A. Let z,y € Fixq,(A). Then dy(z) = f(x) and
d¢(y) = f(y). By Theorem we get d¢(y - ) = f(y - x). Thus

di(z Ny) =ds((y - z) )
= (fly-z)-ds(x)) A (ds(y-z) - fz))
=(fly-z) - f@) A (fly ) f(z))

(By Proposition =fly-z)- f(x)
= f((y-z)- =)
= f(zAy).

Hence, x Ay € Fixy,(A). O

Corollary 2.24. If dy is an f-derivation of A, then x ANy € Fixq,(A) for all z,y € Fixq,(A).
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