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DERIVATIONS OF UP-ALGEBRAS BY MEANS OF

UP-ENDOMORPHISMS

AIYARED IAMPAN

Communicated by B. Davvaz

Abstract. The notion of f -derivations of UP-algebras is introduced, some useful examples

are discussed, and related properties are investigated. Moreover, we show that the fixed set

and the kernel of f -derivations are UP-subalgebras of UP-algebras, and also give examples to

show that the two sets are not UP-ideals of UP-algebras in general.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Exam-

ples of these are BCK-algebras [9], BCI-algebras [10], BCH-algebras [7], KU-algebras [25], SU-

algebras [13] and others. They are strongly connected with logic. For example, BCI-algebras

introduced by Iséki [10] in 1966 have connections with BCI-logic being the BCI-system in

combinatorial logic which has application in the language of functional programming. BCK

and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki
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[9, 10] in 1966 and have been extensively investigated by many researchers. It is known that

the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

In the theory of rings and near rings, the properties of derivations is an important topic to

study [23, 15]. In 2004, Jun and Xin [12] applied the notions of rings and near rings theory to

BCI-algebras and obtained some properties. Several researches were conducted on the general-

izations of the notion of derivations and application to many logical algebras such as: In 2005,

Zhan and Liu [27] introduced the notion of left-right (right-left) f -derivations of BCI-algebras.

In 2006, Abujabal and Al-shehri [1] investigated some fundamental properties and proved

some results on derivations of BCI-algebras. In 2007, Abujabal and Al-shehri [2] introduced

the notion of left derivations of BCI-algebras. In 2009, Javed and Aslam [11] investigated some

fundamental properties and established some results of f -derivations of BCI-algebras. Nisar

[22] introduced the notions of right F -derivations and left F -derivations of BCI-algebras. Nisar

[21] characterized f -derivations of BCI-algebras. Prabpayak and Leerawat [24] studied the no-

tions of left-right (right-left) derivations of BCC-algebras. In 2012, Al-shehri and Bawazeer

[4] introduced the notion of left-right (right-left) t-derivations of BCC-algebras. Lee and Kim

[16] considered the properties of f -derivations of BCC-algebras. Muhiuddin and Al-roqi [18]

introduced the notion of t-derivations of BCI-algebras. Muhiuddin and Al-roqi [17] introduced

the notion of (regular) (α, β)-derivations of BCI-algebras. In 2013, Bawazeer, Al-shehri and

Babusal [6] introduced the notion of generalized derivations of BCC-algebras. Lee [14] intro-

duced a new kind of derivations of BCI-algebras. Muhiuddin, Al-roqi, Jun and Ceven [20]

introduced the notion of symmetric left bi-derivations of BCI-algebras. In 2014, Al-roqi [3]

introduced the notion of generalized (regular) (α, β)-derivations of BCI-algebras. Muhiuddin

and Al-roqi [19] introduced the notion of generalized left derivations of BCI-algebras. Ardekani

and Davvaz [5] introduced the notion of (f, g)-derivations of BCI-algebras. In 2016, Sawika, In-

tasan, Kaewwasri and Iampan [26] introduced the notions of (l, r)-derivations, (r, l)-derivations

and derivations of UP-algebras and investigated some related properties.

The notion of derivations play an important role in studying the many logical algebras. In

this paper, we introduce the notion of f -derivations of UP-algebras which is the generalization

of the notion of derivations [26], some useful examples are discussed, and related properties

are investigated.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1. [8] An algebra A = (A; ·, 0) of type (2, 0) is called a UP-algebra if it satisfies

the following axioms: for any x, y, z ∈ A,

(UP-1): (y · z) · ((x · y) · (x · z)) = 0,

(UP-2): 0 · x = x,



Alg. Struc. Appl. Vol. 3 No. 2 (2016) 1-20. 3

(UP-3): x · 0 = 0, and

(UP-4): x · y = y · x = 0 implies x = y.

Example 1.1. [8] Let X be a universal set. Define a binary operation · on the power set of

X by putting A · B = B ∩ A′ = A′ ∩ B = B − A for all A,B ∈ P(X). Then (P(X); ·, ∅) is a

UP-algebra and we shall call it the power UP-algebra of type 1.

Example 1.2. [8] Let X be a universal set. Define a binary operation ∗ on the power set of X

by putting A ∗B = B ∪A′ = A′ ∪B for all A,B ∈ P(X). Then (P(X); ∗, X) is a UP-algebra

and we shall call it the power UP-algebra of type 2.

In what follows, let A denotes a UP-algebra unless otherwise specified. The following

proposition is very important for the study of UP-algebras.

Proposition 1.1. [8] In a UP-algebra A, the following properties hold: for any x, y, z ∈ A,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.

On a UP-algebra A = (A; ·, 0), we define a binary relation ≤ on A [8] as follows: for all

x, y ∈ A,

x ≤ y if and only if x · y = 0.

Definition 1.2. [8] A nonempty subset B of A is called a UP-ideal of A if it satisfies the

following properties:

(1) the constant 0 of A is in B, and

(2) for any x, y, z ∈ A, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Clearly, A and {0} are UP-ideals of A.

Theorem 1.3. [8] Let A be a UP-algebra and B a UP-ideal of A. Then the following state-

ments hold: for any x, a, b ∈ A,

(1) if b · x ∈ B and b ∈ B, then x ∈ B. Moreover, if b ·X ⊆ B and b ∈ B, then X ⊆ B,

(2) if b ∈ B, then x · b ∈ B. Moreover, if b ∈ B, then X · b ⊆ B, and

(3) if a, b ∈ B, then (b · (a · x)) · x ∈ B.



4 Alg. Struc. Appl. Vol. 3 No. 2 (2016) 1-20.

Definition 1.3. [8] Let (A; ·, 0) and (A′; ·′, 0′) be UP-algebras. A mapping f from A to A′ is

called a UP-homomorphism if

f(x · y) = f(x) ·′ f(y) for all x, y ∈ A.

A UP-homomorphism f : A→ A′ is called a UP-endomorphism of A if A′ = A.

Theorem 1.4. [8] Let (A; ·, 0A) and (B; ∗, 0B) be UP-algebras and let f : A → B be a UP-

homomorphism. Then the following statements hold:

(1) f(0A) = 0B,

(2) for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y),

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In partic-

ular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image f−1(D) is a UP-subalgebra of A.

In particular, Ker(f) is a UP-subalgebra of A,

(5) if C is a UP-ideal of A, then the image f(C) is a UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image f−1(D) is a UP-ideal of A. In partic-

ular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) = {0A} if and only if f is injective.

Definition 1.4. [26] For any x, y ∈ A, we define a binary operation ∧ on A by x∧y = (y ·x)·x.

Definition 1.5. [26] A UP-algebra A is called meet-commutative if x ∧ y = y ∧ x for all

x, y ∈ A, that is, (y · x) · x = (x · y) · y for all x, y ∈ A.

Proposition 1.2. [26] In a UP-algebra A, the following properties hold: for any x ∈ A,

(1) 0 ∧ x = 0,

(2) x ∧ 0 = 0, and

(3) x ∧ x = x.

2. Main Results

In this section, we introduce the notions of (l, r)-f -derivations, (r, l)-f -derivations, and

f -derivations of UP-algebras, and study the fixed set and the kernel of (l, r)-f -derivations,

(r, l)-f -derivations, and f -derivations.

Definition 2.1. Let f be a UP-endomorphism of A. A self-map df : A → A is called an

(l, r)-f -derivation of A if it satisfies the identity df (x · y) = (df (x) · f(y)) ∧ (f(x) · df (y)) for

all x, y ∈ A. Similarly, a self-map df : A→ A is called an (r, l)-f -derivation of A if it satisfies

the identity df (x · y) = (f(x) · df (y)) ∧ (df (x) · f(y)) for all x, y ∈ A. Moreover, if df is both

an (l, r)-f -derivation and an (r, l)-f -derivation of A, it is called an f -derivation of A.
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By using Microsoft Excel, we have all examples.

Example 2.1. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

Then (A; ·, 0) is a UP-algebra. We define a self-map f : A→ A as follows:

f(0) = 0, f(1) = 0, f(2) = 1 and f(3) = 3.

Then f is a UP-endomorphism. We define a self-map df : A→ A as follows:

df (0) = 0, df (1) = 0, df (2) = 1 and df (3) = 0.

Then df is an f -derivation of A.

Proposition 2.1. Each UP-endomorphism f of A is its f -derivation.

Proof. It follows from Proposition 1.2 (3).

Definition 2.2. An (l, r)-f -derivation (resp. (r, l)-f -derivation, f -derivation) df of A is called

regular if df (0) = 0.

Theorem 2.2. In a UP-algebra A, the following statements hold:

(1) every (l, r)-f -derivation of A is regular, and

(2) every (r, l)-f -derivation of A is regular.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. Then

df (0) = df (0 · 0)(By UP-3)

= (df (0) · f(0)) ∧ (f(0) · df (0))

= (df (0) · 0) ∧ (0 · df (0))(By Theorem 1.4 (1))

= 0 ∧ df (0)(By UP-2 and UP-3)

= 0.(By Proposition 1.2 (1))

Hence, df is regular.



6 Alg. Struc. Appl. Vol. 3 No. 2 (2016) 1-20.

(2) Assume that df is an (r, l)-f -derivation of A. Then

df (0) = df (0 · 0)(By UP-3)

= (f(0) · df (0)) ∧ (df (0) · f(0))

= (0 · df (0)) ∧ (df (0) · 0)(By Theorem 1.4 (1))

= df (0) ∧ 0(By UP-2 and UP-3)

= 0.(By Proposition 1.2 (2))

Hence, df is regular.

Corollary 2.3. Every f -derivation of A is regular.

Theorem 2.4. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then df (x) = f(x) ∧ df (x) for all x ∈ A, and

(2) if df is an (r, l)-f -derivation of A, then df (x) = df (x) ∧ f(x) for all x ∈ A.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. Then, for all x ∈ A,

df (x) = df (0 · x)(By UP-2)

= (df (0) · f(x)) ∧ (f(0) · df (x))

= (0 · f(x)) ∧ (0 · df (x))(By Theorem 1.4 (1) and 2.2 (1))

= f(x) ∧ df (x).(By UP-2)

(2) Assume that df is an (r, l)-f -derivation of A. Then, for all x ∈ A,

df (x) = df (0 · x)(By UP-2)

= (f(0) · df (x)) ∧ (df (0) · f(x))

= (0 · df (x)) ∧ (0 · f(x))(By Theorem 1.4 (1) and 2.2 (2))

= df (x) ∧ f(x).(By UP-2)

Corollary 2.5. If df is an f -derivation of A, then df (x) = df (x) ∧ f(x) = f(x) ∧ df (x) for

all x ∈ A.

Proposition 2.2. Let df be an (l, r)-f -derivation of A. Then the following properties hold:

for any x, y ∈ A,
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(1) f(x) ≤ df (x),

(2) df (x) · f(y) ≤ df (x · y),

(3) if f(df (x)) = df (x) or df (df (x)) = f(x), then df (x · df (x)) = 0,

(4) if f(df (x)) = df (x) or df (df (x)) = f(x), then df (df (x) · x) = 0,

(5) if df (f(x)) = f(x) or f(f(x)) = df (x), then df (x · f(x)) = 0, and

(6) if df (f(x)) = f(x) or f(f(x)) = df (x), then df (f(x) · x) = 0.

Proof. (1) For all x ∈ A,

f(x) · df (x) = f(x) · (f(x) ∧ df (x))(By Theorem 2.4 (1))

= f(x) · ((df (x) · f(x)) · f(x))

= 0.(By Proposition 1.1 (5))

Hence, f(x) ≤ df (x) for all x ∈ A.

(2) For all x, y ∈ A,

(df (x) · f(y)) · df (x · y) = (df (x) · f(y)) · ((df (x) · f(y)) ∧ (f(x) · df (y)))

= (df (x) · f(y)) · (((f(x) · df (y)) · (df (x) · f(y))) · (df (x) · f(y)))

= 0.(By Proposition 1.1 (5))

Hence, df (x) · f(y) ≤ df (x · y) for all x, y ∈ A.

(3) For all x ∈ A, if f(df (x)) = df (x), then

df (x · df (x)) = (df (x) · f(df (x))) ∧ (f(x) · df (df (x)))

= (df (x) · df (x)) ∧ (f(x) · df (df (x)))

= 0 ∧ (f(x) · df (df (x)))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

If df (df (x)) = f(x), then

df (x · df (x)) = (df (x) · f(df (x))) ∧ (f(x) · df (df (x)))

= (df (x) · f(df (x))) ∧ (f(x) · f(x))

= (df (x) · f(df (x))) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))
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(4) For all x ∈ A, if f(df (x)) = df (x), then

df (df (x) · x) = (df (df (x)) · f(x)) ∧ (f(df (x)) · df (x))

= (df (df (x)) · f(x)) ∧ (df (x) · df (x))

= (df (df (x)) · f(x)) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

If df (df (x)) = f(x), then

df (df (x) · x) = (df (df (x)) · f(x)) ∧ (f(df (x)) · df (x))

= (f(x) · f(x)) ∧ (f(df (x)) · df (x))

= 0 ∧ (f(df (x)) · df (x))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

(5) For all x ∈ A, if df (f(x)) = f(x), then

df (x · f(x)) = (df (x) · f(f(x))) ∧ (f(x) · df (f(x)))

= (df (x) · f(f(x))) ∧ (f(x) · f(x))

= (df (x) · f(f(x))) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

If f(f(x)) = df (x), then

df (x · f(x)) = (df (x) · f(f(x))) ∧ (f(x) · df (f(x)))

= (df (x) · df (x)) ∧ (f(x) · df (f(x)))

= 0 ∧ (f(x) · df (f(x)))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

(6) For all x ∈ A, if df (f(x)) = f(x), then

df (f(x) · x) = (df (f(x)) · f(x)) ∧ (f(f(x)) · df (x))

= (f(x) · f(x)) ∧ (f(f(x)) · df (x))

= 0 ∧ (f(f(x)) · df (x))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))
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If f(f(x)) = df (x), then

df (f(x) · x) = (df (f(x)) · f(x)) ∧ (f(f(x)) · df (x))

= (df (f(x)) · f(x)) ∧ (df (x) · df (x))

= (df (f(x)) · f(x)) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

Proposition 2.3. Let df be an (r, l)-f -derivation of A. Then the following properties hold:

for any x, y ∈ A,

(1) f(x) · df (y) ≤ df (x · y),

(2) if f(df (x)) = df (x) or df (df (x)) = f(x), then df (x · df (x)) = 0,

(3) if f(df (x)) = df (x) or df (df (x)) = f(x), then df (df (x) · x) = 0,

(4) if df (f(x)) = f(x) or f(f(x)) = df (x), then df (x · f(x)) = 0, and

(5) if df (f(x)) = f(x) or f(f(x)) = df (x), then df (f(x) · x) = 0.

Proof. (1) For all x, y ∈ A,

(f(x) · df (y)) · df (x · y) = (f(x) · df (y)) · ((f(x) · df (y)) ∧ (df (x) · f(y)))

= (f(x) · df (y)) · (((df (x) · f(y)) · (f(x) · df (y))) · (f(x) · df (y)))

= 0.(By Proposition 1.1 (5))

Hence, f(x) · df (y) ≤ df (x · y) for all x, y ∈ A.

(2) For all x ∈ A, if f(df (x)) = df (x), then

df (x · df (x)) = (f(x) · df (df (x))) ∧ (df (x) · f(df (x)))

= (f(x) · df (df (x))) ∧ (df (x) · df (x))

= (f(x) · df (df (x))) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

If df (df (x)) = f(x), then

df (x · df (x)) = (f(x) · df (df (x))) ∧ (df (x) · f(df (x)))

= (f(x) · f(x)) ∧ (df (x) · f(df (x)))

= 0 ∧ (df (x) · f(df (x)))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))
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(3) For all x ∈ A, if f(df (x)) = df (x), then

df (df (x) · x) = (f(df (x)) · df (x)) ∧ (df (df (x)) · f(x))

= (df (x) · df (x)) ∧ (df (df (x)) · f(x))

= 0 ∧ (df (df (x)) · f(x))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

If df (df (x)) = f(x), then

df (df (x) · x) = (f(df (x)) · df (x)) ∧ (df (df (x)) · f(x))

= (f(df (x)) · df (x)) ∧ (f(x) · f(x))

= (f(df (x)) · df (x)) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

(4) For all x ∈ A, if df (f(x)) = f(x), then

df (x · f(x)) = (f(x) · df (f(x))) ∧ (df (x) · f(f(x)))

= (f(x) · f(x)) ∧ (df (x) · f(f(x)))

= 0 ∧ (df (x) · f(f(x)))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

If f(f(x)) = df (x), then

df (x · f(x)) = (f(x) · df (f(x))) ∧ (df (x) · f(f(x)))

= (f(x) · df (f(x))) ∧ (df (x) · df (x))

= (f(x) · df (f(x))) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))

(5) For all x ∈ A, if df (f(x)) = f(x), then

df (f(x) · x) = (f(f(x)) · df (x)) ∧ (df (f(x)) · f(x))

= (f(f(x)) · df (x)) ∧ (f(x) · f(x))

= (f(f(x)) · df (x)) ∧ 0(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (2))
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If f(f(x)) = df (x), then

df (f(x) · x) = (f(f(x)) · df (x)) ∧ (df (f(x)) · f(x))

= (df (x) · df (x)) ∧ (df (f(x)) · f(x))

= 0 ∧ (df (f(x)) · f(x))(By Proposition 1.1 (1))

= 0.(By Proposition 1.2 (1))

Definition 2.3. A UP-ideal B of A is called f -invariant (with respect to an (l, r)-f -derivation

(resp. (r, l)-f -derivation, f -derivation) df of A) if df (B) ⊆ B.

Example 2.6. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

Then (A; ·, 0) is a UP-algebra. We define a self-map f : A→ A as follows:

f(0) = 0, f(1) = 0, f(2) = 1 and f(3) = 3.

Then f is a UP-endomorphism. We define a self-map df : A→ A as follows:

df (0) = 0, df (1) = 0, df (2) = 1 and df (3) = 0.

Then df is an f -derivation of A. Let B = {0, 1, 2} and C = {0, 1, 3}. Then B and C are

UP-ideals of A and it follows that they are f -invariants with respect to an f -derivation df of

A.

Theorem 2.7. Every ideal of A with containing the endomorphic image of f is f -invariant

with respect to any (l, r)-f -derivation of A.

Proof. Assume that B is an ideal of A and df is an (l, r)-f -derivation of A. Let y ∈ df (B).

Then y = df (x) for some x ∈ B. By Proposition 2.2 (1), we obtain f(x) ≤ df (x); that is,

f(x) · df (x) = 0. Thus f(x) · y = f(x) · df (x) = 0 ∈ B. Since f(B) ⊆ B, we have f(x) ∈ B.

It follows from Theorem 1.3 (1) that y ∈ B. Hence, df (B) ⊆ B, which implies that B is

f -invariant.



12 Alg. Struc. Appl. Vol. 3 No. 2 (2016) 1-20.

Corollary 2.8. Every ideal of A with containing the endomorphic image of f is f -invariant

with respect to any f -derivation of A.

Definition 2.4. Let df be an (l, r)-f -derivation (resp. (r, l)-f -derivation, f -derivation) of A.

We define a subset Kerdf (A) of A by

Kerdf (A) = {x ∈ A | df (x) = 0}.

Theorem 2.9. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then y ∧ x ∈ Kerdf (A) for all y ∈ Kerdf (A) and

x ∈ A, and

(2) if df is an (r, l)-f -derivation of A, then y ∧ x ∈ Kerdf (A) for all y ∈ Kerdf (A) and

x ∈ A.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. Let y ∈ Kerdf (A) and x ∈ A. Then

df (y) = 0. Thus

df (y ∧ x) = df ((x · y) · y)

= (df (x · y) · f(y)) ∧ (f(x · y) · df (y))

= (df (x · y) · f(y)) ∧ (f(x · y) · 0)

= (df (x · y) · f(y)) ∧ 0(By UP-3)

= 0.(By Proposition 1.2 (2))

Hence, y ∧ x ∈ Kerdf (A).

(2) Assume that df is an (r, l)-f -derivation of A. Let y ∈ Kerdf (A) and x ∈ A. Then df (y) = 0.

Thus

df (y ∧ x) = df ((x · y) · y)

= (f(x · y) · df (y)) ∧ (df (x · y) · f(y))

= (f(x · y) · 0) ∧ (df (x · y) · f(y))

= 0 ∧ (df (x · y) · f(y))(By UP-3)

= 0.(By Proposition 1.2 (1))

Hence, y ∧ x ∈ Kerdf (A).

Corollary 2.10. If df is an f -derivation of A, then y ∧ x ∈ Kerdf (A) for all y ∈ Kerdf (A)

and x ∈ A.

Give an example of conflict that x∧y 6∈ Kerdf (A) for all y ∈ Kerdf (A) and x ∈ A in general.
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Example 2.11. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 0 3

2 0 0 0 3

3 0 1 2 0

Then (A; ·, 0) is a UP-algebra. Let 1A be an identity map on A. Then 1A is a UP-

endomorphism. We define a self-map d1A : A→ A as follows:

d1A(0) = 0, d1A(1) = 0, d1A(2) = 2 and d1A(3) = 3.

Then d1A is an f -derivation of A and so Kerd1A (A) = {0, 1}. Thus 2 ∧ 1 = 2 /∈ Kerd1A (A)

when 1 ∈ Kerd1A (A) and 2 ∈ A.

Theorem 2.12. In a meet-commutative UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A and for any x, y ∈ A is such that y ≤ x and

y ∈ Kerdf (A), then x ∈ Kerdf (A), and

(2) if df is an (r, l)-f -derivation of A and for any x, y ∈ A is such that y ≤ x and

y ∈ Kerdf (A), then x ∈ Kerdf (A).

Proof. (1) Assume that df is an (l, r)-f -derivation of A. Let x, y ∈ A be such that y ≤ x and

y ∈ Kerdf (A). Then y · x = 0 and df (y) = 0. Thus

df (x) = df (0 · x)(By UP-2)

= df ((y · x) · x)

= df ((x · y) · y)

= (df (x · y) · f(y)) ∧ (f(x · y) · df (y))

= (df (x · y) · f(y)) ∧ (f(x · y) · 0)

= (df (x · y) · f(y)) ∧ 0(By UP-3)

= 0.(By Proposition 1.2 (2))

Hence, x ∈ Kerdf (A).
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(2) Assume that df is an (r, l)-f -derivation of A. Let x, y ∈ A be such that y ≤ x and

y ∈ Kerdf (A). Then y · x = 0 and df (y) = 0. Thus

df (x) = df (0 · x)(By UP-2)

= df ((y · x) · x)

= df ((x · y) · y)

= (f(x · y) · df (y)) ∧ (df (x · y) · f(y))

= (f(x · y) · 0) ∧ (df (x · y) · f(y))

= 0 ∧ (df (x · y) · f(y))(By UP-3)

= 0.(By Proposition 1.2 (1))

Hence, x ∈ Kerdf (A).

Corollary 2.13. If df is an f -derivation of a meet-commutative UP-algebra A and for any

x, y ∈ A is such that y ≤ x and y ∈ Kerdf (A), then x ∈ Kerdf (A).

Theorem 2.14. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then y · x ∈ Kerdf (A) for all x ∈ Kerdf (A) and

y ∈ A, and

(2) if df is an (r, l)-f -derivation of A, then y · x ∈ Kerdf (A) for all x ∈ Kerdf (A) and

y ∈ A.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. Let x ∈ Kerdf (A) and y ∈ A. Then

df (x) = 0. Thus

df (y · x) = (df (y) · f(x)) ∧ (f(y) · df (x))

= (df (y) · f(x)) ∧ (f(y) · 0)

= (df (y) · f(x)) ∧ 0(By UP-3)

= 0.(By Proposition 1.2 (2))

Hence, y · x ∈ Kerdf (A).
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(2) Assume that df is an (r, l)-f -derivation of A. Let x ∈ Kerdf (A) and y ∈ A. Then df (x) = 0.

Thus

df (y · x) = (f(y) · df (x)) ∧ (df (y) · f(x))

= (f(y) · 0) ∧ (df (y) · f(x))

= 0 ∧ (df (y) · f(x))(By UP-3)

= 0.(By Proposition 1.2 (1))

Hence, y · x ∈ Kerdf (A).

Corollary 2.15. If df is an f -derivation of A, then y · x ∈ Kerdf (A) for all x ∈ Kerdf (A)

and y ∈ A.

Example 2.16. From Example 2.1, we have Kerdf (A) = {0, 1, 3}. Then 3 · 2 = 2 /∈ Kerdf (A)

when 3 ∈ Kerdf (A) and 2 ∈ A.

Theorem 2.17. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then Kerdf (A) is a UP-subalgebra of A, and

(2) if df is an (r, l)-f -derivation of A, then Kerdf (A) is a UP-subalgebra of A.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. By Theorem 2.2 (1), we have df (0) = 0

and so 0 ∈ Kerdf (A) 6= ∅. Let x, y ∈ Kerdf (A). Then df (x) = 0 and df (y) = 0. Thus

df (x · y) = (df (x) · f(y)) ∧ (f(x) · df (y))

= (0 · f(y)) ∧ (f(x) · 0)

= f(y) ∧ 0(By UP-2 and UP-3)

= 0.(By Proposition 1.2 (2))

Hence, x · y ∈ Kerdf (A), so Kerdf (A) is a UP-subalgebra of A.

(2) Assume that df is an (r, l)-f -derivation of A. By Theorem 2.2 (2), we have df (0) = 0 and

so 0 ∈ Kerdf (A) 6= ∅. Let x, y ∈ Kerdf (A). Then df (x) = 0 and df (y) = 0. Thus

df (x · y) = (f(x) · df (y)) ∧ (df (x) · f(y))

= (f(x) · 0) ∧ (0 · f(y))

= 0 ∧ f(y)(By UP-2 and UP-3)

= 0.(By Proposition 1.2 (1))

Hence, x · y ∈ Kerdf (A), so Kerdf (A) is a UP-subalgebra of A.
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Corollary 2.18. If df is an f -derivation of A, then Kerdf (A) is a UP-subalgebra of A.

Give an example of conflict that Kerdf (A) is not a UP-ideal of A in general.

Example 2.19. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 0 0

2 0 1 0 3

3 0 1 2 0

Then (A; ·, 0) is a UP-algebra. Let 1A be an identity map on A. Then 1A is a UP-

endomorphism. We define a self-map d1A : A→ A as follows:

d1A(0) = 0, d1A(1) = 0, d1A(2) = 2 and d1A(3) = 0.

Then d1A is an (l, r)-1A-derivation of A and Kerd1A (A) = {0, 1, 3}. Since 0 · (1 · 2) = 0 ∈
Kerd1A (A), 1 ∈ Kerd1A (A) but 0 · 2 = 2 /∈ Kerd1A (A), we conclude that Kerd1A (A) is not a

UP-ideal of A.

Definition 2.5. Let df be an (l, r)-f -derivation (resp. (r, l)-f -derivation, f -derivation) of A.

We define a subset Fixdf (A) of A by

Fixdf (A) = {x ∈ A | df (x) = f(x)}.

Theorem 2.20. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then Fixdf (A) is a UP-subalgebra of A, and

(2) if df is an (r, l)-f -derivation of A, then Fixdf (A) is a UP-subalgebra of A.

Proof. (1) Assume that df is an (l, r)-f -derivation of A. By Theorem 2.2 (1) and 1.4 (1), we

have df (0) = 0 = f(0) and so 0 ∈ Fixdf (A) 6= ∅. Let x, y ∈ Fixdf (A). Then df (x) = f(x) and

df (y) = f(y). Thus

df (x · y) = (df (x) · f(y)) ∧ (f(x) · df (y))

= (f(x) · f(y)) ∧ (f(x) · f(y))

= f(x · y) ∧ f(x · y)

= f(x · y).(By Proposition 1.2 (3))

Hence, x · y ∈ Fixd(A), so Fixd(A) is a UP-subalgebra of A.
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(2) Assume that df is an (r, l)-f -derivation of A. By Theorem 2.2 (2) and 1.4 (1), we have

df (0) = 0 = f(0) and so 0 ∈ Fixdf (A) 6= ∅. Let x, y ∈ Fixdf (A). Then df (x) = f(x) and

df (y) = f(y). Thus

df (x · y) = (f(x) · df (y)) ∧ (df (x) · f(y))

= (f(x) · f(y)) ∧ (f(x) · f(y))

= f(x · y) ∧ f(x · y)

= f(x · y).(By Proposition 1.2 (3))

Hence, x · y ∈ Fixdf (A), so Fixd(A) is a UP-subalgebra of A.

Corollary 2.21. If df is an f -derivation of A, then Fixdf (A) is a UP-subalgebra of A.

Give an example of conflict that Fixdf (A) is not a UP-ideal of A in general.

Example 2.22. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 0 0

2 0 1 0 3

3 0 1 2 0

Then (A; ·, 0) is a UP-algebra. Let 1A be an identity map on A. Then 1A is a UP-

endomorphism. We define a self-map d1A : A→ A as follows:

d1A(0) = 0, d1A(1) = 1, d1A(2) = 2 and d1A(3) = 0.

Then d1A is an (l, r)-1A-derivation of A and Fixd1A
(A) = {0, 1, 2}. Since 2 · (1 · 3) = 0 ∈

Fixd1A
(A), 1 ∈ Fixd1A

(A) but 2 · 3 = 3 /∈ Fixd1A
(A), we conclude that Fixd1A

(A) is not a

UP-ideal of A.

Theorem 2.23. In a UP-algebra A, the following statements hold:

(1) if df is an (l, r)-f -derivation of A, then x ∧ y ∈ Fixdf (A) for all x, y ∈ Fixdf (A), and

(2) if df is an (r, l)-f -derivation of A, then x ∧ y ∈ Fixdf (A) for all x, y ∈ Fixdf (A).
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Proof. (1) Assume that df is an (l, r)-f -derivation of A. Let x, y ∈ Fixdf (A). Then df (x) =

f(x) and df (y) = f(y). By Theorem 2.20 (1), we get df (y · x) = f(y · x). Thus

df (x ∧ y) = df ((y · x) · x)

= (df (y · x) · f(x)) ∧ (f(y · x) · df (x))

= (f(y · x) · f(x)) ∧ (f(y · x) · f(x))

= f(y · x) · f(x)(By Proposition 1.2 (3))

= f((y · x) · x)

= f(x ∧ y).

Hence, x ∧ y ∈ Fixdf (A).

(2) Assume that df is an (r, l)-f -derivation of A. Let x, y ∈ Fixdf (A). Then df (x) = f(x) and

df (y) = f(y). By Theorem 2.20 (2), we get df (y · x) = f(y · x). Thus

df (x ∧ y) = df ((y · x) · x)

= (f(y · x) · df (x)) ∧ (df (y · x) · f(x))

= (f(y · x) · f(x)) ∧ (f(y · x) · f(x))

= f(y · x) · f(x)(By Proposition 1.2 (3))

= f((y · x) · x)

= f(x ∧ y).

Hence, x ∧ y ∈ Fixdf (A).

Corollary 2.24. If df is an f -derivation of A, then x∧ y ∈ Fixdf (A) for all x, y ∈ Fixdf (A).
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