Similarity DH-Algebras

Document Type : Research Paper


Universidad Nacional de San Juan, Argentina.


In  \cite{GL}, B. Gerla and I. Leu\c{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirte\c{s} in \cite{C}, study the notion of similarity on \L ukasiewicz-Moisil algebras. In particular, strong similarity \L ukasiewicz-Moisil algebras were defined. In this paper we define and study the variety of similarity symmetric Heyting algebras (or similarity DH-algebras), i.e. symmetric Heyting algebras endowed with an operation of similarity $S$. These algebras are a generalization of strong similarity \L ukasiewicz-Moisil algebras. In addition, we introduce a propositional calculus and prove this calculus has similarity DH-algebras as algebraic counterpart.


[1] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Lukasiewicz-Moisil Algebras, Anals of Discrete Mathematics, 49, North-Holland, The Netherlands, 1991.
[2] J.L. Castro, F. Klawonn, Similarity in Fuzzy Reasoning, using Fuzzy Logic. Mathware and Soft Computing, 2:
197-228, 1995.
[3] G. Cattaneo, D. Ciucci, R. Giuntini, M. Konig. Algebraic structures related to many valued logical systems. I. Heyting Wajsberg algebras. Fund. Inform. 63 (2004), no. 4, 331-355.
[4] F. Chirtes, Similarity Lukasiewicz{Moisil algebras, An. Univ. Craiova Ser. Mat. Inform. 35 (2008), 54-75.
[5] F. Formato, G. Gerla, M. Sessa, Similarity-based uni cation, Fundamenta Informaticae, 41: 393-414, 2000.
[6] G. Georgescu, A. Popescu, Concept lattices and similarity in non-commutative fuzzy logic, Fundamenta Informaticae, 53: 23-54, 2002.
[7] B. Gerla and I. Leustean, Similarity MV{algebras, Fund. Inform. 69 (2006), no. 3, 287-300.
[8] A. Monteiro, Sur les algebres de Heyting Simetriques, Special issue in honor of Antonio Monteiro. Portugal. Math. 39(1{4), 1980.
[9] L. Pasi, S. Kalle, Fuzzy similarity based classi cation in normal Lukasiewicz algebra with geometric and harmonicmean, Third eusat, an international conference in fuzzy logic and technology, Zittau, Saks. (2003) 242-245.
[10] A. Rodrguez, A. Torrens, V. Verdu. Lukasiewicz logic and Wajsberg algebras. Polish Acad. Sci. Inst. Philos. Sociol. Bull. Sect. Logic 19 (1990), no. 2, 51-55.
[11] H.P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Z. Math. Logik Grundlag. Math. 33 (1987), no. 6, 565-573.
[12] E. Turunen, A Lukasiewicz-style many-valued similarity reasoning. Review. in Beyond Two: Theory and Applications of Multiple Valued Logic, Melvin Fitting and Ewa Orlowska editors, 311-321, 2003.
[13] L. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3: 177-200, 1971.