Document Type : Research Paper


1 Imam Khomeini International University, Qazvin - IRAN.

2 Imam Khomeini International University, Qazvin, IRAN.


Let $G$ be a group. The order graph of $G$ is the (undirected)
graph $\Gamma(G)$,
those whose vertices are non-trivial subgroups of $G$ and two distinct
vertices $H$ and $K$ are adjacent if and only if either
$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate the
interplay between the group-theoretic properties of $G$ and the
graph-theoretic properties of $\Gamma(G)$. For a finite group
$G$, we show that $\Gamma(G)$ is a connected graph with diameter at most
two, and     $\Gamma(G)$ is a complete graph if
and only if $G$ is a $p$-group for some prime number $p$. Furthermore,
it is shown that $\Gamma(G)=K_5$ if and only if either
$G\cong C_{p^5}, C_3\times C_3$, $C_2\times
C_4$ or $G\cong Q_8$.


[1] Y. Berkovich and J. Zvonimir, Group of Prime power Order, Walter de Gruyter Co. KG Berlin, New York, (2011).
[2] N. Bigss, Algebraic Graph Theory, Cambridge University Press, Cambridge, (1993).
[3] D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition, John Wiley and Sons, Inc., Hoboken, NJ, (2004).
[4] D. Gorenstein, Finite Groups, Chelsea Publishing Co. Harper, New York, (1980).
[5] I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, 92. American Mathematical Society, Provi-
dence, RI, (2008).
[6] T. W. Hungerford, Algebra, Springer-Verlag, New York, Heidelberg and Berlin, (1989).
[7] H. E. Rose, A Course on Finite Groups , Cambridge University press, Cambridge, (1978).
[8] J. Rose, A Course on Group Theory , Cambridge University press, Cambridge, (1998).