On the NSE characterization of certain finite simple groups

Document Type : Research Paper


Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran.



For a group $G$, $\pi_e(G)$ and $s_m(G)$ are denoted the set of orders of elements and the number of elements of order $m$ in $G$, respectively. Let ${\rm nse}(G)=\{s_m(G) \ | \ m\in \pi_e(G)\}$. An arbitrary finite group $M$ is NSE characterization if, for every group $G$, the equality ${\rm nse}(G)={\rm nse}(M)$ implies that $G\cong M$. In this paper, we are going to show that the non-Abelian finite simple groups $A_9$, $A_{10}$, $A_{12}$, $U_4(3)$, $U_5(2)$, $U_6(2)$, $S_6(2)$, $O_8^+(2)$ and $HS$ are characterizable by NSE.


[1] N. Ahanjideh and B. Asadian, NSE characterization of some alternating groups, J. Algebra Appl., 14 No. 2 (2015) 1550012.
[2] A. Khalili Asboei, S. S. Amiri, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 No. 2 (2013) 1250158.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, oxford, 1985.
[4] G. Frobenius, Verallgemeinerung des Sylowschen Satze, Berliner Sitz, (1895) 981-993.
[5] M. Jahandideh and M. R Darafsheh, NSE characterization of the Chevalley group G2(4), Arab. J. Math., 7 No. 1 (2018) 21-26.
[6] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups, Monatsh. Math., 163 No. 1 (2011) 39-50.
[7] G. A. Miller, Addition to a theorem due to Frobenius, Bull. Amer. Math. Soc., 11 No. 1 (1904) 6-7.
[8] A. R. Moghaddamfar and S. Rahbariyan, A quantitative characterization of some finite simple groups through order and degree pattern, Note di Mat., 34 No. 2 (2014) 91-105.
[9] A.R. Moghaddamfar and S. Rahbariyan, A Quantitative Characterization of Mathieu Group M12, Southeast Asian Bull. Math., 39 No. 2 (2015) 235-248.
[10] H. Parvizi Mosaed, A. Iranmanesh and A. Tehranian, Nse characterization of the simple group L2(3n), Publ. de l'Institut Math., 99 No. 113 (2016) 193-201.
[11] C. Shao and Q. Jiang, A new characterization of some linear groups by NSE, J. Algebra Appl., 13 No. 2 (2014).
[12] C. G. Shao, W. Shi and Q. H. Jiang, Characterization of simple K4-groups, Front. Math. China, 3 (2008) 355-370.
[13] R. Shen, C. Shao, Q. Jiang, W. J. Shi and V. D. Mazurov, A new characterization of A5, Monatsh. Math., 160 No. 3 (2010) 337-341.