Graph product of generalized Cayley graphs over polygroups

Document Type : Research Paper


1 Faculty of science, Mahallat institute of higher education, Mahallat, Iran

2 Department of Mathematics, Yazd University, Yazd, Iran



 In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.


[1] J. A. Bondy, U. S. R. Murthy, Graph Theory with Applications, Macmillan Press Ltd, 1976.
[2] P. Bonansinga and P. Corsini, Sugli omomor smi di semi-ipergruppi e di ipergruppi, Boll. Un. Mat. Italy,
1-B (1982) 717-727.
[3] S.D. Comer, Polygroups derived from cogroups, J. Algebra, 89 (1984), 397-405.
[4] S.D. Comer, Extension of polygroups by polygroups and their representations using color schemes, Lecture
notes in Math., No 1004, Universal Algebra and Lattice Theory, (1982) 91-103.
[5] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[6] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academical Publications, Dordrecht, 2003.
[7] D. Cvetkovic, R. Lucic, A new generalization of the p-sum of graphs, Univ. Beograd, Publ. Elektrotehn.
Fak., Ser. Mat. Fiz. No. 302 - No. 319 (1970), 67-71.
[8] B. Davvaz, Semihypergroup theory, Elsevier/Academic Press, London, 2016. viii+156 pp.
[9] B. Davvaz, Polygroup Theory and Related Systems, World Scienti c Publishing Co. Pte. Ltd., Hackensack,
NJ, 2013.
[10] Feng Li, Wei Wang, Zongben Xu and Haixing Zhao, Some results on the lexicographic product of vertex-
transitive graphs, Appl. Math. Lett. 24(11) (2011), 1924-1926.
[11] D. Heidari, B. Davvaz and S. M. S. Modarres, Topological polygroups, Bull. Malays. Math. Sci. Soc., 39
(2016), 707-721.
[12] D. Heidari, M. Amooshahi and B. Davvaz, Generalized Cayley graphs over polygroups, Comm. Algebra,
(2019), DOI:10.1080/00927872.2018.1530254.
[13] S. Ioulidis, Polygroups et certains de leurs properietes, Bull. Greek Math. Soc., 22 (1981),
[14] W. Klotz, and T. Sander, GCD-graphs and NEPS of complete graphs. Ars Math. Contemp, 6 (2013), no.
2, 289-299.
[15] F. Marty, Sur une generalization de la notion de groupe, 8iem Congress Math. Scandinaves, Stockholm,
(1934) 45-49.
[16] J. Mittas, Hypergroupes canoniques, Math. Balkanica, Beograd, 2 (1972) 165-179.
[17] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Inc, 115, Palm Harber, USA