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GRAPH PRODUCT OF GENERALIZED CAYLEY GRAPHS OVER

POLYGROUPS

D. HEIDARI∗ AND B. DAVVAZ

Abstract. In this paper, we introduce a suitable generalization of Cayley graphs that is

defined over polygroups (GCP-graph) and give some examples and properties. Then, we

mention a generalization of NEPS that contains some known graph operations and apply to

GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.

1. Introduction and preliminaries

A graph product is a binary operation on graphs. So, many large graphs can be constructed

from existing smaller graphs. In [10], Li et al. studied the properties of the lexicographic

product of vertex-transitive and of edge-transitive graphs, and of the Cayley graphs. They

proved that the lexicographic product of vertex-transitive (edge-transitive) graphs is a vertex-

transitive (edge-transitive) graph and, in particular, the lexicographic product of Cayley graphs

is a Cayley graph.
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The non-complete extended p-sum (NEPS) of graphs is very general graph operation. Many

graph operations are special cases of NEPS, to name just the sum, product and strong product

of graphs.

Definition 1.1. Let B ⊆ {0, 1}n \{(0, 0, · · · , 0)} be a set of binary n-tuples. NEPS with basis

B of graphs G1, . . . , Gn is the graph whose vertex set is the Cartesian product of the vertex

sets of graphs G1, . . . , Gn in which two vertices, say (x1, · · · , xn) and (y1, · · · , yn), are adjacent
if and only if there exists an n-tuple (β1, · · · , βn) ∈ B such that xi = yi holds whenever βi = 0,

and xi is adjacent to yi (in Gi) whenever βi = 1.

Klotz and Sander proved that the class of gcd-graphs and the class of NEPS of complete

graphs coincide [14].

The theory of hypergroups which is a generalization of the concept of ordinary groups first

was introduced by Marty [15]. Since then many researchers have worked on hypergroups

and developed it. A short review of this theory appears in [5, 6, 8, 9, 17]. Application of

hypergroups has mainly appeared in special subclasses. For example, polygroups which are

certain subclasses of hypergroups are studied in [13] by Ioulidis and are used to study color

algebra [3, 4]. Quasi-canonical hypergroups (called polygroups by Comer) were introduced

in [2], as a generalization of canonical hypergroups, introduced in [16]. In [11] Heidari et al.

studied the concept of topological polygroups as a generalization of topological groups.

Definition 1.2. [3, 9] A polygroup is a system ⟨P, ◦, 1,−1 ⟩, where 1 ∈ P ,−1 is a unitary

operation on P , ◦ maps P ×P into the non-empty subsets of P , and the following axioms hold

for all x, y, z ∈ P :

(P1) x ◦ (y ◦ z) = (x ◦ y) ◦ z,
(P2) 1 ◦ x = x = x ◦ 1,
(P3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

If A,B are non-empty subsets of P , then A ◦B is given by

A ◦B =
∪
a∈A
b∈B

a ◦ b.

x ◦ A is used for {x} ◦ A and A ◦ x for A ◦ {x}. Clearly, every group is a polygroup. The

following elementary facts about polygroups follow easily from the axioms: 1 ∈ x◦x−1∩x−1◦x,
1−1 = 1, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1, where A−1 = {a−1 | a ∈ A}. A polygroup in

which every element has order 2 (i.e., x−1 = x for all x) is called symmetric. For more details

about polygroups we refer the readers to [9].

Lemma 1.3. Let P = ⟨P, ◦, 1,−1 ⟩ be a polygroup and B be a non-empty subset of P . Then

⟨B⟩ =
{
x ∈ P : x ∈ b1 ◦ b2 ◦ · · · ◦ bk, s.t. k ∈ N, bi ∈ B ∪ B−1

}
.
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Proof. It is straightforward.

2. Main results

It is easy to see that the Cartesian, tensor and strong product of graphs are special types

of NEPS but the lexicographic product is not. In this section, we mention a generalization

of NEPS that contain some other known graph operations, for example the compliment and

the lexicographic product of graphs. Firstly, we introduce a suitable generalization of Cayley

graphs that is defined over polygroups.

Definition 2.1. [12] Let P = ⟨P, ◦, 1,−1 ⟩ be a polygroup and S, say the connection set, be a

non-empty inverse closed subset (i.e. S−1 = S) of P . Then we define the generalized Cayley

graph GCP(P; S) as a simple graph with vertex set P and edge set

E = {{x, y} | x ̸= y and x ◦ y−1 ∩ S ̸= ∅}.

A graph Λ is called a GCP-graph if there exists a polygroup P and a connection set S such

that Λ ∼= GCP(P; S).

In what follows, we provide some examples of generalized Cayley graphs with the given

polygroups and connection sets.

Example 2.2. The generalized Cayley graph of the polygroup P2 = ⟨{1, 2, 3, 4}, ◦, 1,−1 ⟩ and
the connection set {3, 4} is shown in Figure 2.2.

◦ 1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 {1, 3} {2, 4}

4 4 3 {2, 4} {1, 3}

..

1

.

2

.3. 4

Figure 1. GCP(P2; {3, 4})
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Example 2.3. The generalized Cayley graph of the polygroup P3 = ⟨{1, 2, 3, 4, 5}, ◦, 1,−1 ⟩
and the connection set {3, 4} is shown in Figure 2.3.

◦ 1 2 3 4 5

1 1 2 3 4 5

2 2 {1, 2} 3 4 5

3 3 3 {1, 2, 4} {3, 5} {4, 5}

4 4 4 {3, 5} {1, 2, 4, 5} {3, 4}

5 5 5 {4, 5} {3, 4} {1, 2, 3, 5}

..

1

.

2

. 3. 4.

5

Figure 2. GCP(P3; {3, 4})

The necessary and sufficient condition for connectedness of a GCP-graph over a polygroup

is same as that in Cayley graphs. In other words:

Theorem 2.4. [12] Let P = ⟨P, ◦, 1,−1 ⟩ be a polygroup and S be a connection set. Then, the

generalized Cayley graph GCP(P; S) is connected if and only if S generates P .

Definition 2.5. Let G1, G2, . . . , Gn be graphs and B ⊆ {−1, 0, 1}n. Then the product of

G1, G2, . . . , Gn respect to the base B, denoted by G = Pr(G1, . . . , Gn;B), is a graph with

the vertex set V (G) = V (G1) × · · · × V (Gn) and two distinct vertices x = (x1, . . . , xn) and

y = (y1 . . . , yn) are adjacent in G, if and only if there exists an n-tuple β = (β1, · · · , βn) ∈ B

such that xi = yi, whenever βi = 0, xi and yi are adjacent in Gi, whenever βi = 1 and xi and

yi are non-adjacent in Gi, whenever βi = −1.

In particular, for a simple graph G = (V,E), we have:

Pr(G; ∅) = Pr(G; {0}) ∼= K|V |;

Pr(G; {1}) = G;

Pr(G; {−1}) = G.

Also, some known product operations on graphs can be considered as the product graphs

with suitable bases.
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Lemma 2.6. Let G1, . . . , Gn be simple graphs and ∗ be the Cartesian (�), tensor (×), strong

(�) or lexicographic product (◦) of graphs. Then there exists a base B ⊆ {−1, 0, 1}n such that

G1 ∗ · · · ∗Gn = Pr(G1, . . . , Gn;B).

Proof. For every i ∈ {1, 2, . . . , n} put

∆i = {0}i−1 × {1} × {0}n−i and Σi = {0}i−1 × {1} × {−1, 0, 1}n−i.

Then we have

G1� · · ·�Gn = Pr(G1, . . . , Gn;B1);

G1 × · · · ×Gn = Pr(G1, . . . , Gn;B2);

G1 � · · ·�Gn = Pr(G1, . . . , Gn;B3);

G1 ◦ · · · ◦Gn = Pr(G1, . . . , Gn;B4);

where B1 = {(1, 1, · · · , 1)}, B2 =
n∪

i=1
∆i, B3 = (

n∪
i=1

∆i) ∪ {(1, 1, . . . , 1)} and B4 =
n∪

i=1
Σi.

In the following theorem we prove that the product of GCP-graphs is a GCP-graph.

Theorem 2.7. Let G1, G2, . . . , Gn be GCP-graphs and B ⊆ {−1, 0, 1}n. Then

Pr(G1,G2, . . . ,Gn; B) is a GCP-graph.

Proof. Suppose that G1, G2, . . . , Gn are GCP-graphs, B ⊆ {−1, 0, 1}n and G =

Pr(G1,G2, . . . ,Gn; B). Thus, there exist polygroups

P1 = ⟨P1, ◦1, e1,I1 ⟩,P2 = ⟨P2, ◦2, e2,I2 ⟩, . . . ,Pn = ⟨Pn, ◦n, en,In ⟩

and connection sets S1 ⊆ P1, S2 ⊆ P2, . . . , Sn ⊆ Pn such that

Gi
∼= Γi = GCP(Pi; Si),

for every i = 1, 2, . . . , n.

Let Γ = Pr(Γ1,Γ2, . . . ,Γn;B) and Λ = GCP(P1 ×P2 × · · · ×Pn, S) such that

S =
∪

β∈B
(S

(β1)
1 × S

(β2)
2 × · · · × S

(βn)
2 ),

where S
(0)
i = {ei}, S(1)

i = Si and S
(−1)
i = Pi \ Si for all i = 1, 2, . . . , n.
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We claim that Γ = Λ. Since, by the definition, V (Γ) = V (Λ) = P1×P2×· · ·×Pn as desired.

On the other hand,

E(Γ) =
{
((x1, . . . , xn), (y1, . . . , yn)) | ∃β ∈ B, xi = yi ⇔ βi = 0,

xi ∼ yi ⇔ βi = 1, xi ̸= yi, xi � yi ⇔ βi = −1,∀i ∈ {1, 2, . . . , n}
}

=
{
((x1, . . . , xn), (y1, . . . , yn)) | ∃β ∈ B, ei ∈ xi ◦i yIii ⇔ βi = 0,

(xi ◦i yIii ) ∩ Si ̸= ∅ ⇔ βi = 1, (xi ◦i yIii ) ∩ Si = ∅ ⇔ βi = −1,

∀i ∈ {1, 2, . . . , n}
}

=
{
((x1, . . . , xn), (y1, . . . , yn)) | ∃β ∈ B,

((x1 ◦1 yI11 )× · · · × (xn ◦ yInn )) ∩ (S
(β1)
1 × · · · × S

(βn)
n ) ̸= ∅

}
= E(Λ).

Therefore, G ∼= Γ = Λ so the proof is complete since, Λ is a GCP-graph.

Corollary 2.8. The Cartesian, tensor, strong and lexicographic product of GCP-graphs are

GCP-graphs.

Finally, from Theorem 2.7 we can obtain the connection sets for the Cartesian, tensor,

strong and lexicographic product of two GCP-graphs.

Lemma 2.9. Let P1 = ⟨P1, ◦1, e1,I1 ⟩ and P2 = ⟨P2, ◦2, e2,I2 ⟩ be two polygroups and P =

P1 ×P2. Then for every connection sets S1 ⊆ P1 and S2 ⊆ P2 the following assertions hold:

(1) GCP(P1, S1)�GCP(P2;S2) = GCP(P;S1 × S2);

(2) GCP(P1, S1)×GCP(P2;S2) = GCP(P;S1 × {e2} ∪ {e1} × S2);

(3) GCP(P1, S1)�GCP(P2;S2) = GCP(P;S1 × S2 ∪ S1 × {e2} ∪ {e1} × S2);

(4) GCP(P1, S1) ◦GCP(P2;S2) = GCP(P;S1 × P2 ∪ {e1} × S2).

In spite of the fact that every Cayley graph is a GCP-graph and so the following proposition

holds as a result of Lemma 2.9, we prove it independently for the lexicographic product. This

proof is modified the proof of Theorem 2.4 in [10].

Proposition 2.10. The Cartesian, tensor, strong and lexicographic product of Cayley graphs

are Cayley graphs.

Proof. Let Γ1 = Cay(G1, S1) and Γ1 = Cay(G1, S1) be two Cayley graphs. Consider Γ =

Γ1 ◦ Γ2 and Λ = Cay(G1 × G2, S) where, S = S1 × G2 ∪ {e1} × S2. Then Γ = Λ since,

V (Γ) = V (Λ) = G1 ×G2 and

E(Γ) = {((x1, x1), (y1, y2)) | x1 ∼ y1 or (x1 = y1 and x2 ∼ y2)}

= {((x1, x1), (y1, y2)) | x1y−1
1 ∈ S1 or x1y

−1
1 = e1 and x2y

−1
2 ∈ S2}

= {((x1, x1), (y1, y2)) | (x1, x2)(y1, y2)−1 ∈ S} = E(Λ).
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Therefore, the proof is complete.

Example 2.11. Let K2 be the complete graph on two vertises and H be the chair graph.

Then K2
∼= Cay(Z2, {1}) and H ∼= GCP(P3, {5}), where P3 is the polygroup considered in

Exapmple 2. The Cartesian product of K2 and H is G = GCP(Z2 × P3, {(1, 5)}). See Figure

2.11.
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Figure 3. K2 ×H ∼= G
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