Prime and primary ideals on L-algebras

Document Type : Research Paper

Authors

Soft Computing Center, Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

Abstract

In this paper, we review L-algebras and CL-algebras, focusing in particular on the notion of a prime ideal. We establish criteria for a prime ideal and analyze the relationship between maximal and prime ideals. In addition, we define prime ideals in CL-bounded algebras, and state conditions for an ideal to be prime in a self-distributing bounded L-algebra. We introduce the radical of an ideal and show that if its radical is maximal, then it is a prime ideal. Finally, we establish conditions under which every prime ideal in an L-algebra is primary.

Keywords


[1] M. Aaly Kologani, Relations between L-algebras and other logical algebras, J. Algebr. Hyperstrucres Log. Algebr., 2 No. 1 (2023) 27-46.
[2] M. Aaly Kologani, Some results on L-algebras, Soft Comput., 27 (2023) 13765-13777.
[3] M. Bedrood and A. Borumand Saeid, A study of BL-algebras by co-zero divisors, J. Algebr. Hyperstrucres Log. Algebr., 5 No. 2 (2024) 89-100.
[4] R. A. Borzooei and M. Aaly Kologani, G. R. Rezaei, Radical of filters on hoops, Iran. J. Fuzzy Syst., 20 No. 7 (2023) 127-143.
[5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag New York Inc., New York, Heidelberg, 1981.
[6] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many Valued Reasoning, Kluwer Academic, Dordrecht, 2000.
[7] L. Ciungu, Results in L-algebras, Algebra Univers., 82 No. 1 (2021) 7.
[8] V. G. Drinfeld, On some unsolved problems in quantum group theory, In: P. P. Kulish (Ed.), Quantum Groups, 1990, Lect. Notes Math., 1510, Springer, Berlin, 1992.
[9] P. Etingof, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Commun. Algebra., 31 No. 4 (2003) 1961-1973.
[10] P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100 No. 2 (1999) 169-209.
[11] T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra, 206 (1998) 97-112.
[12] H. Khajeh Nasir, R. A. Borzooei and M. Aaly Kologani, Topology on bounded CL-algebras, Soft Comput., 28 (2024) 7617-7625.
[13] P. Köhler, Brouwerian semilattices, Trans. Am. Math. Soc, 268 (1981) 103-126.
[14] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Company, 1994.
[15] M. Mohseni Takallo, Block code on L-algebras, J. Algebr. Hyperstrucres Log. Algebr., 4 No. 1 (2023) 47-60.
[16] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math., 193 (2005) 40-55.
[17] W. Rump, L-algebras, self-similarity, and l-groups, J. Algebra, 6 (2008) 2328-2348.
[18] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl., 7 (2008) 471-490.
[19] W. Rump, L-algebras with duality and the structure group of a set-theoretic solution to the Yang-Baxter equation, J. Pure Appl. Algebra, 224 No. 8 (2020) 106314.
[20] W. Rump, The category of L-algebras, Theory Appl. Categ., 39 No. 21 (2023) 598-624.
[21] W. Rump, L-algebras and topology, J. Algebra Appl., 22 No. 2 (2023) 2350034.
[22] W. Rump and L. Vendramin, The prime spectrum of an L-algebra, P. Am. Math. Soc., 152 (2024) 3197-3207.
[23] W. Rump and Y. Yang, Intervals in ℓ-groups as L-algebras, Algebra Univers., 67 No. 2 (2012) 121-130.
[24] W. Rump and Y. Yang, Pseudo-MV algebras as L-algebras, J. Mult.-Valued Log. Soft Comput., 19 No. 5 (2012) 621-632.
[25] S. Saidi Goraghani and R. A. Borzooei, L-Modules, Bull. Sect. Log., 53 No. 1 (2024) 125-144.
[26] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math., 124 (1996) 619-647.
[27] X. L. Xin, X. F. Yang and Y. C. Ma, Pseudo L-algebras, Iran. J. Fuzzy Syst., 19 No. 6 (2022) 61-73.
[28] B. Zeighami, M. Mohseni Takallo, M. Aaly Kologani, S. S. Ahn and R. A. Borzooei, Classification of L-algebras up to order 4, J. Algebr. Hyperstrucres Log. Algebr., 5 No. 1 (2024) 63-86.