On prime element principle in le-modules

Document Type : Research Paper

Authors

1 School of Mathematics and Statistics, University of Hyderabad, Hyderabad, India.

2 Department of Mathematics, Savitribai Phule Pune University, Maharashtra, India.

Abstract

In this article, we have extended the notion of Oka families for commutative rings and modules to le-modules. We have introduced prime element principle, stated as, for a particular family F of submodule elements of an le-module M, submodule element maximal in terms of not belonging to F is prime. As a consequence, many results about the existence of prime elements of le-modules have been established. Furthermore, we have provided a method for constructing prime elements in le-modules and proved the existence of maximal m-systems, which is employed to characterize minimal prime elements.

Keywords


[1] A. K. Bhuniya and M. Kumbhakar, Uniqueness of primary decompositions in Laskerian le-modules, Acta Math. Hungar., 158 No. 1 (2019) 202-215.
[2] A. K. Bhuniya and M. Kumbhakar, On Noetherian pseudo-prime spectrum of topological le-modules, Commun. Korean Math. Soc., 38 No. 1 (2023) 1-9.
[3] M. Kumbhakar and A. K. Bhuniya, On irreducible pseudo-prime spectrum of topological le-modules, Quasigr. Relat. Syst., 26 (2018) 251-262.
[4] M. Kumbhakar and A. K. Bhuniya, On the prime spectrum of an le-module, J. Algebra Appl., 20 No. 12 (2021) 215220.
[5] M. Kumbhakar and A. K. Bhuniya, Pseudo-prime submodule elements of an le-modules, Asian-Eur. J. Math., 16 No. 12 (2023) 2350224.
[6] T. Y. Lam and M. L. Reyes, A prime ideal principle in commutative algebra, J. Algebra, 319 (2008) 3006-3027.
[7] T. Y. Lam and M. L. Reyes, Oka and Ako ideal families in commutative rings, In: V. D. Nguyen, F. Guerriero, L. Hammoudi and P. Kanwar, Rings, Modules and Representations, Vol. 480, pp. 263-288, Ohio University-Zanesville, Zanesville, 2009.
[8] K. Oka, Sur les fonctions analytiques de plusieurs variables, J. Math. Soc. Japan, 3 (1951) 204-214.
[9] R. Nekooei and E. Rostami, A prime submodule principle, Algebra Colloq., 21 No. 4 (2014) 697-710.
[10] G. N. Sudarshana and D. Sivakumar, Characterazations of unique maximal submodule and strong m-system, J. Math. Comput. Sci., 11 No. 3 (2021) 3095-3101.