An approximate notion in the homology of the enveloping dual Banach algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Basic Science, Ilam University, P.O. Box 69315-516, Ilam, Iran

2 Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

3 Department of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper, we introduce a notion of approximate WAP-biprojectivity for the enveloping dual Banach algebras. We also find some relations between approximate Connes amenability, approximate biprojectivity, left φ-contractibility and approximate WAP-biprojectivity. Moreover, we propose a criterion to show that the enveloping dual Banach algebras associated to triangular Banach algebras are not approximately WAP-biprojective. Finally, we present some examples of the enveloping dual Banach algebras associated to l1(S) and 1(N) (equipped with a new multiplication) and also study their approximate WAP-biprojectivity, where S is a unital weakly cancellative semigroup.

Keywords


[1] Y. Choi, E. Samei and R. Stokke, Extension of derivations, and Connes-amenability of the enveloping dual Banach algebra, Math. Scand., 117 (2015) 258-303.
[2] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
[3] H. G. Dales, A. T. M. Lau and D. Strauss, Banach Algebras on Semigroups and Their Compactifications, Vol. 205, American Mathematical Society, 2010.
[4] G. H. Esslamzadeh, B. Shojaee and A. Mahmoodi, Approximate Connes-amenability of dual Banach algebras, Bull. Belg. Math. Soc. Simon stevin., 19 No. 2 (2012) 193-213.
[5] A. Ghaffari and S. Javadi, φ-Connes amenability of dual Banach algebras, Bull. Iranian Math. Soc., 43 No. 1 (2017) 25-39.
[6] F. Ghahramani and Y. Zang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Philos. Soc., 142 No. 1 (2007) 111-123.
[7] A. Y. Helemskii, The Homology of Banach and Topological Algebras, Springer Dordrecht, 1989.
[8] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 1 No. 193 (2009) 53-78.
[9] A. T. M. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal., 145 (1997) 175-204.
[10] A. Mahmoodi, Approximate injectivity of dual Banach algebras, Bull. Belg. Math. Soc. Simon stevin., 20 (2013) 831-842.
[11] A. Mahmoodi, Connes amenability-like properties, Studia Math., 220 (2014) 55-72.
[12] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Stud. Math., 202 No. 3 (2011) 205-225.
[13] V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001) 47-66.
[14] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 95 (2004) 124-144.
[15] A. Sahami, S. F. Shariati and A. Pourabbas, Approximate Connes-biprojectivity of dual Banach algebras, Asian Eur. J. Math., 14 (2021) 2150025.
[16] S. F. Shariati, A. Pourabbas and A. Sahami, WAP-biprojectivity of the enveloping dual Banach algebras, Boll. Unione. Mat. Ital., 13 (2020) 91-101.
[17] A. Shirinkalam and A. Pourabbas, On approximate Connes-amenability of enveloping dual Banach algebras, New York J. Math., 23 (2017) 699-709.
[18] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc., 127 (1999) 3237-3242.