Algebraic AS TA Ctructures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 12 No. 3 (2025) pp 169-179.

Research Paper

AN APPROXIMATE NOTION IN THE HOMOLOGY OF THE ENVELOPING DUAL BANACH ALGEBRAS

AMIR SAHAMI, SEYEDEH FATEMEH SHARIATI AND ABASALT BODAGHI*

ABSTRACT. In this paper, we introduce a notion of approximate WAP-biprojectivity for the enveloping dual Banach algebras. We also find some relations between approximate Connes amenability, approximate biprojectivity, left φ -contractibility and approximate WAP-biprojectivity. Moreover, we propose a criterion to show that the enveloping dual Banach algebras associated to triangular Banach algebras are not approximately WAP-biprojective. Finally, we present some examples of the enveloping dual Banach algebras associated to $l^1(S)$ and $l^1(\mathbb{N})$ (equipped with a new multiplication) and also study their approximate WAP-biprojectivity, where S is a unital weakly cancellative semigroup.

DOI: 10.22034/as.2024.21666.1718

 $\operatorname{MSC}(2010)\colon$ Primary: 46M10, 46H20.

 $Keywords:\ Approximate\ biprojectivity,\ Approximate\ Connes\ amenability,\ Approximate\ WAP-biprojectivity,\ Enveloping\ Connes\ amenability,\ Approximate\ WAP-biprojectivity,\ Enveloping\ Connes\ Connes\ Approximate\ WAP-biprojectivity,\ Enveloping\ Connes\ Co$

dual Banach algebra, Semigroup algebra.

Received: 22 May 2024, Accepted: 30 December 2024.

*Corresponding author

1. Introduction and Preliminaries

Biprojectivity for Banach algebras was proved to be an important and fertile notion in the homological theory [7]. In fact, a Banach algebra \mathcal{A} is biprojective if there exists a bounded \mathcal{A} -bimodule morphism $\rho: \mathcal{A} \to \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho(a) = a$, where $\pi_{\mathcal{A}}$ is the multiplication operator given by $\pi_{\mathcal{A}}(a \otimes b) = ab$ for every $a, b \in \mathcal{A}$. Indeed, the measure algebra M(G) on a locally compact group G is biprojective if and only if G is finite. The approximate homological notion is similar to the approximate biprojectivity of Banach algebras has been introduced by Zhang [18]. In fact, a Banach algebra \mathcal{A} is called approximately biprojective if there exists a net (ρ_{α}) of continuous \mathcal{A} -bimodule morphisms from \mathcal{A} into $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \to a$ for every $a \in \mathcal{A}$.

Here, we recall some definitions, notations and terminologies. Let \mathcal{A} be a Banach algebra. An \mathcal{A} -bimodule E is called *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. A Banach algebra \mathcal{A} is called dual if it is dual as a Banach \mathcal{A} -bimodule. Examples of dual Banach algebras include all von Neumann algebras, the algebra $\mathfrak{B}(E) = (E \widehat{\otimes} E^*)^*$ of all bounded operators on a reflexive Banach space E where $\widehat{\otimes}$ stands for the projective tensor product. Also the measure algebra $M(G) = C_0(G)^*$, the Fourier-Stieltjes algebra $B(G) = C^*(G)^*$, and the second dual B^{**} of an Arens regular Banach algebra B.

The groundwork of dual Banach algebras was laid by Runde [13]. It is obvious that every Banach algebra is not always dual Banach algebra but recently Choi et al. showed that there exists a dual Banach algebra associated to an arbitrary Banach algebra which is called the enveloping dual Banach algebra [1].

An element $x \in E$ is called weakly almost periodic if the module maps $A \to E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are weakly compact. The set of all weakly almost periodic elements of E is denoted by WAP(E) which is a norm closed subbimodule of E [14, Definition 4.1]. For a Banach algebra A, we write $F(A)_*$ for the A-bimodule $WAP(A^*)$ which is the left introverted subspace of A^* in the sense of [9, §1]. Runde observed that $F(A) = WAP(A^*)^*$ is a dual Banach algebra with the first Arens product \square inherited from A^{**} . He also showed that F(A) is a canonical dual Banach algebra associated to A [14, Theorem 4.10]. Choi et al. in [1] called F(A) the enveloping dual Banach algebra associated to A. They showed that if A is a Banach algebra and X is a Banach A-bimodule, then $F_A(X) = WAP(X^*)^*$ is a normal dual F(A)-bimodule [1, Theorem 4.3].

A dual Banach \mathcal{A} -bimodule E is normal if for each $x \in E$ the module maps $\mathcal{A} \longrightarrow E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are weak*-weak* (briefly, wk^*-wk^*) continuous. Let \mathcal{A} be a Banach algebra and E be a Banach \mathcal{A} -bimodule. A bounded linear map $D: \mathcal{A} \longrightarrow E$ is called a bounded derivation if for every $a, b \in \mathcal{A}$, $D(ab) = a \cdot D(b) + D(a) \cdot b$. A derivation $D: \mathcal{A} \longrightarrow E$ is called inner if there exists an element x in E such that $D(a) = a \cdot x - x \cdot a$ ($a \in \mathcal{A}$). A dual

Banach algebra \mathcal{A} is said to be $Connes\ amenable$ if for every normal dual Banach \mathcal{A} -bimodule E, every wk^* -continuous derivation $D:\mathcal{A}\longrightarrow E$ is inner. For a given dual Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule E, $\sigma wc(E)$ denotes the set of all elements $x\in E$ such that the module maps $\mathcal{A}\longrightarrow E$; $a\mapsto a\cdot x$ and $a\mapsto x\cdot a$ are wk^* -wk-continuous. One can see that $\sigma wc(E)$ is a closed submodule of E and E^* is normal if and only if $E=\sigma wc(E)$ (see [13] and [14] for more details). Moreover, for a dual Banach algebra \mathcal{A} , consider the product morphism $\pi_{\mathcal{A}}: \mathcal{A}\widehat{\otimes}\mathcal{A}\longrightarrow \mathcal{A}$ given by $\pi_{\mathcal{A}}(a\otimes b)=ab$ for every $a,b\in\mathcal{A}$. Since $\sigma wc(\mathcal{A}_*)=\mathcal{A}_*$, the adjoint of $\pi_{\mathcal{A}}$ maps \mathcal{A}_* into $\sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^*$. Therefore $\pi_{\mathcal{A}}^*$ drops to an \mathcal{A} -bimodule morphism $\pi_{\sigma wc}: (\sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^*)^*\longrightarrow \mathcal{A}$. An element $M\in (\sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^*)^*$ satisfying

$$a \cdot M = M \cdot a$$
, and $a\pi_{\sigma wc} M = a$ $(a \in \mathcal{A})$,

is called a σwc -virtual diagonal for \mathcal{A} . Runde showed that a dual Banach algebra \mathcal{A} is Connes amenable if and only if there is a σwc -virtual diagonal for \mathcal{A} [14, Theorem 4.8].

In [1], the authors investigated the Connes amenability of the enveloping dual Banach algebra. Indeed, they characterized Connes amenability for this specific dual Banach algebra in terms of diagonal type elements so-called WAP-virtual diagonal [1, Theorem 6.12]. There is a natural variant of biprojectivity, as introduced and studied in [16] that is better adapted to categories of enveloping dual Banach algebras. This notion has become known as WAP-biprojectivity. Shariati et al. showed that for an infinite commutative compact group G, the convolution Banach algebra $F(L^2(G))$ is not WAP-biprojective [16].

The concept of approximate Connes amenability which is a generalization of Connes amenability was introduced in [4]. A unital dual Banach algebra \mathcal{A} is approximately Connes amenable if and only if there exists a net (M_{α}) in $(\sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^*)^*$ such that $a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0$ and $\pi_{\sigma wc}(M_{\alpha})a \to a$ for every $a \in \mathcal{A}$ [4, Theorem 3.3]. This concept has been extended for the category of enveloping dual Banach algebras in [17]. For a given Banach algebra \mathcal{A} , $F(\mathcal{A})$ is approximately Connes amenable if and only if \mathcal{A} has an approximately WAP-virtual diagonal [17, Theorem 2.6].

The organization of the paper is as follows. First, we introduce the notion of approximately WAP-biprojective for the enveloping dual Banach algebra $F(\mathcal{A})$ associated to a Banach algebra \mathcal{A} . It is natural to compare this new notion with other approximate homological concepts. In this regard, we prove that the approximate biprojectivity of a Banach algebra \mathcal{A} implies that $F(\mathcal{A})$ is approximate WAP-biprojective and also for a dual Banach algebra \mathcal{A} , we obtain the relationship between approximate WAP-biprojectivity of $F(\mathcal{A})$ and approximate Connes biprojectivity of \mathcal{A} . More precisely, we prove that for a dual Banach algebra \mathcal{A} with a left approximate identity if $F(\mathcal{A})$ is approximately WAP-biprojective, then \mathcal{A} is left φ -contractible, where φ is a wk^* -continuous character on \mathcal{A} . Using this tool we show that for a totally ordered set I which has a smallest element and a dual Banach algebra \mathcal{A} with a right identity and the

non-empty wk^* -continuous character space, the enveloping dual Banach algebra of a class of $I \times I$ -upper triangular matrix F(UP(I, A)) is approximately WAP-biprojective if and only if F(A) is approximately WAP-biprojective and I is singleton. We present an example of the enveloping dual Banach algebra, $F(L^2(G))$ which distinguishes our new notion from another notion WAP-biprojectivity, where G is an infinite commutative compact group. For a unital weakly cancellative semigroup S with additional assumption wk^* -continuity of φ_S , $F(l^1(S))$ is approximately WAP-biprojective if and only if S is a finite group.

2. Approximate WAP-biprojectivity

In this section, we define a new concept on F(A) and study some its properties and compare with the previous concepts.

Let $\Delta_{WAP}: F_{\mathcal{A}}(\mathcal{A}\widehat{\otimes}\mathcal{A}) \longrightarrow F(\mathcal{A})$ be the wk^* - wk^* continuous \mathcal{A} -bimodule map induced by $\pi_{\mathcal{A}}: \mathcal{A}\widehat{\otimes}\mathcal{A} \longrightarrow \mathcal{A}$. Note that Δ_{WAP} is also an $F(\mathcal{A})$ -bimodule map (see [1, Corollary 5.2] for more details). Composing the canonical inclusion map $\mathcal{A} \hookrightarrow \mathcal{A}^{**}$ with the adjoint of the inclusion map $F(\mathcal{A})_* \hookrightarrow \mathcal{A}^*$, we obtain a continuous homomorphism of Banach algebras $\eta_{\mathcal{A}}: \mathcal{A} \longrightarrow F(\mathcal{A})$ which has a wk^* -dense range. We write \bar{a} instead of $\eta_{\mathcal{A}}(a)$ [1, Definition 6.4]. Let \mathcal{A} be a Banach algebra. An element $M \in F_{\mathcal{A}}(\mathcal{A}\widehat{\otimes}\mathcal{A})$ is called a WAP-virtual diagonal for \mathcal{A} if for every $a \in \mathcal{A}$

$$a \cdot M = M \cdot a$$
 and $\Delta_{WAP}(M) \cdot a = \bar{a}$.

Let \mathcal{A} be a Banach algebra. Then $F(\mathcal{A})$ is called WAP-biprojective if there exists a wk^* - wk^* continuous \mathcal{A} -bimodule morphism $\rho: F(\mathcal{A}) \longrightarrow F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ such that

$$\Delta_{WAP} \circ \rho = id_{F(A)},$$

see [16]. Motivated by the above notations, we now ready to give the definition of our new notion as follows.

Definition 2.1. Let \mathcal{A} be a Banach algebra. Then, $F(\mathcal{A})$ is called approximately WAPbiprojective if there exists a net (ρ_{α}) of wk^* - wk^* continuous \mathcal{A} -bimodule morphism ρ_{α} : $F(\mathcal{A}) \longrightarrow F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A}) \text{ such that } \Delta_{WAP} \circ \rho_{\alpha}(\psi) \to \psi \text{ for all } \psi \in F(\mathcal{A}).$

Definition 2.1 indicates that every WAP-biprojective enveloping dual Banach algebra is approximately WAP-biprojective.

For two Banach spaces X and Y, we denote by B(X,Y), the space of all bounded linear operators from X to Y. Recall that the weak* operator topology (W^*OT) on $B(X,Y^*)$ is the locally convex topology determined by the seminorms $\{p_{x,y}: x \in X, y \in Y\}$, where $p_{x,y}(T) = |\langle y, Tx \rangle|$. Indeed, the net $(T_\alpha) \subset B(X,Y^*)$ converges to T in the weak* operator topology of $B(X,Y^*)$ if $T_\alpha(x)$ converges to T(x) in the weak* topology of Y^* for every $x \in X$ [2].

Remark 2.2. If the net (ρ_{α}) in definition 2.1 is bounded, then the notions approximate WAP-biprojectivity and WAP-biprojectivity are the same. To see this, we should remind that on bounded sets, the W^*OT coincides with the wk^* -topology of $B(F(\mathcal{A}), F_{\mathcal{A}}(\widehat{\mathcal{A}} \otimes \mathcal{A}))$, where identified with $(F(\mathcal{A}) \otimes WAP(\mathcal{A} \otimes \mathcal{A})^*)^*$. Since the unit ball of $B(F(\mathcal{A}), F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A}))$ is W^*OT -compact, the net (ρ_{α}) has W^*OT -limit point. Set $\rho := W^*OT$ - $\lim_{\alpha} \rho_{\alpha}$. It follows that

$$\rho(xy) = wk^* - \lim_{\alpha} \rho_{\alpha}(xy) = wk^* - \lim_{\alpha} x \cdot \rho_{\alpha}(y) = x \cdot wk^* - \lim_{\alpha} \rho_{\alpha}(y) = x \cdot \rho(y),$$

and by similarity for the right action, $\rho(xy) = \rho(x) \cdot y$. In addition

$$\Delta_{WAP} \circ \rho(\psi) = \Delta_{WAP}(wk^* - \lim_{\alpha} \rho_{\alpha}(\psi)) = wk^* - \lim_{\alpha} \Delta_{WAP} \circ \rho_{\alpha}(\psi) = \psi.$$

Let \mathcal{A} be a Banach algebra and $F(\mathcal{A})$ has an identity element e. An approximately WAPvirtual diagonal for \mathcal{A} is a net $(M_{\alpha}) \subseteq F_{\mathcal{A}}(\widehat{\mathcal{A}} \otimes \mathcal{A})$ such that for each $a \in \mathcal{A}$

$$a \cdot M - M \cdot a \to 0$$
 and $\Delta_{WAP}(M) \to e$.

Theorem 2.3. Let A be a Banach algebra. If F(A) is approximately WAP-biprojective with an identity, then F(A) is approximately Connes amenable.

Proof. Suppose that $F(\mathcal{A})$ is approximately WAP-biprojective with an identity e. Then, there exists a wk^* - wk^* continuous \mathcal{A} -bimodule morphism $\rho_{\alpha}: F(\mathcal{A}) \longrightarrow F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ such that $\Delta_{WAP} \circ \rho_{\alpha}$ tends to $id_{F(\mathcal{A})}$. Put $M_{\alpha} := \rho_{\alpha}(e)$. Hence, (M_{α}) is a net in $F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ and by [16, Lemma 2.2 (i)] for every $a \in \mathcal{A}$ and $\eta \in F(\mathcal{A})$, we have

$$a \cdot M_{\alpha} = a \cdot \rho_{\alpha}(e) = \rho_{\alpha}(a \cdot e) = \rho_{\alpha}(\bar{a} \Box e) = \rho_{\alpha}(e \Box \bar{a}) = \rho_{\alpha}(e \cdot a) = \rho_{\alpha}(e) \cdot a = M_{\alpha} \cdot a$$

and

$$\lim_{\alpha} \Delta_{WAP}(M_{\alpha}) \square \eta = \lim_{\alpha} (\Delta_{WAP} \circ \rho_{\alpha}(e)) \square \eta = e \square \eta = \eta.$$

The last relations show that M_{α} is an approximately WAP-virtual diagonal for \mathcal{A} . It follows that $F(\mathcal{A})$ is approximately Connes amenable [17, Theorem 2.6]. \square

Recall from [15] that a dual Banach algebra \mathcal{A} is called *approximately Connes biprojective* if there exists a (not necessarily bounded) net $(\rho_{\alpha})_{\alpha}$ of continuous \mathcal{A} -bimodule morphisms from \mathcal{A} into $(\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^*)^*$ such that

$$\pi_{\sigma wc} \circ \rho_{\alpha}(a) \to a, \quad (a \in \mathcal{A}).$$

Theorem 2.4. Let A be a dual Banach algebra. If F(A) is approximately WAP-biprojective, then A is approximately Connes biprojective.

Proof. By assumptions, there is a net of bounded \mathcal{A} -bimodule morphism $\rho_{\alpha}: F(\mathcal{A}) \longrightarrow F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ satisfies $\lim_{\alpha} \Delta_{WAP} \circ \rho_{\alpha} = id_{F(\mathcal{A})}$. According to [14], $\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^* \subseteq WAP(\mathcal{A} \widehat{\otimes} \mathcal{A})^*$ induces a quotient map $\theta: F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A}) \longrightarrow (\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^*)^*$ defined by $\theta(u) = u|_{\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^*}$, where $u \in F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$. Since \mathcal{A} is normal as Banach \mathcal{A} -bimodule, again by [14], $\mathcal{A}_* \subseteq WAP(\mathcal{A}^*)$ and so there is a quotient map $\xi: F(\mathcal{A}) \longrightarrow \mathcal{A}$ such that $\xi \circ \eta_{\mathcal{A}} = id_{\mathcal{A}}$. We claim that $\xi \circ \Delta_{WAP} = \pi_{\sigma wc} \circ \theta$. For doing it, we have

$$\langle f, \xi \circ \Delta_{WAP}(v) \rangle = \langle f, (\Delta_{WAP}(v)) |_{\mathcal{A}_*} \rangle = \langle f, \Delta_{WAP}(v) \rangle = \langle \pi^* |_{WAP(\mathcal{A}^*)}(f), v \rangle$$

$$= \langle \pi^*_{\mathcal{A}}(f), v \rangle = \langle \pi^* |_{\mathcal{A}_*}(f), v \rangle = \langle \pi^* |_{\mathcal{A}_*}(f), v |_{\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^*} \rangle$$

$$= \langle \pi^* |_{\mathcal{A}_*}(f), \theta(v) \rangle = \langle f, \pi_{\sigma wc} \circ \theta(v) \rangle,$$

for all $v \in F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ and $f \in \mathcal{A}_*$. Let $\psi_{\alpha} = \theta \circ \rho_{\alpha} \circ \eta_{\mathcal{A}}$. We obtain a net of bounded \mathcal{A} -bimodule morphism $\psi_{\alpha} : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \widehat{\otimes} \mathcal{A})^*)^*$ such that

$$\pi_{\sigma wc} \circ \psi_{\alpha} = \pi_{\sigma wc} \circ \theta \circ \rho_{\alpha} \circ \eta_{A} = \xi \circ \Delta_{WAP} \circ \rho_{\alpha} \circ \eta_{A}.$$

Since $\Delta_{WAP} \circ \rho_{\alpha}$ tends to $id_{F(\mathcal{A})}$, we get $\lim_{\alpha} \pi_{\sigma wc} \circ \psi_{\alpha}(a) = \xi \circ id_{F(\mathcal{A})} \circ \eta_{\mathcal{A}}(a) = a$, as required.

Corollary 2.5. Let A be a reflexive Banach algebra. If F(A) is approximately WAP-biprojective, then F(A) is approximately Connes biprojective.

Recall from [6] that a Banach algebra \mathcal{A} is called *pseudo-contractible* if there exists a not necessarily bounded net (u_{α}) in $\mathcal{A}\widehat{\otimes}\mathcal{A}$ such that $a\cdot u_{\alpha}=u_{\alpha}\cdot a$ and $\pi_{\mathcal{A}}(u_{\alpha})a\to a$ for every $a\in\mathcal{A}$.

Theorem 2.6. Let A be a Banach algebra. If A is pseudo-contractible, then F(A) is approximately WAP-biprojective.

Proof. The pseudo-contractibility of \mathcal{A} implies that there exists a net (u_{α}) in $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $a \cdot u_{\alpha} = u_{\alpha} \cdot a$ and $\pi_{\mathcal{A}}(u_{\alpha})a \to a$ for all $a \in \mathcal{A}$. Define $\rho_{\alpha} : F(\mathcal{A}) \longrightarrow F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ via $\rho_{\alpha}(\psi) = \psi \bullet \overline{u_{\alpha}}$, for all $\psi \in F(\mathcal{A})$, where \bullet denotes the module action of $F(\mathcal{A})$ on $F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ and $\overline{u_{\alpha}} = \eta_{\mathcal{A}}(u_{\alpha})$. Since $F_{\mathcal{A}}(\mathcal{A} \widehat{\otimes} \mathcal{A})$ is a normal dual $F(\mathcal{A})$ -bimodule [1, Theorem 4.3], ρ_{α} is wk^* - wk^* continuous for every α . Using Lemma [16, Lemma 2.2], for each $a \in \mathcal{A}$ and $\psi \in F(\mathcal{A})$ we have

$$a \cdot \rho_{\alpha}(\psi) = a \cdot (\psi \bullet \overline{u_{\alpha}}) = \overline{a} \bullet (\psi \bullet \overline{u_{\alpha}}) = (\overline{a} \Box \psi) \bullet \overline{u_{\alpha}} = (a \cdot \psi) \bullet \overline{u_{\alpha}} = \rho_{\alpha}(a \cdot \psi),$$

and also

$$\rho_{\alpha}(\psi) \cdot a = (\psi \bullet \overline{u_{\alpha}}) \cdot a = (\psi \bullet \overline{u_{\alpha}}) \bullet \overline{a} = \psi \bullet (\overline{u_{\alpha}} \bullet \overline{a})$$

$$= \psi \bullet (\overline{u_{\alpha} \cdot a}) = \psi \bullet (\overline{a \cdot u_{\alpha}}) = \psi \bullet (\overline{a} \bullet \overline{u_{\alpha}})$$

$$= (\psi \Box \overline{a}) \bullet \overline{u_{\alpha}} = (\psi \cdot a) \bullet \overline{u_{\alpha}} = \rho_{\alpha}(\psi \cdot a).$$

Hence, ρ_{α} is an \mathcal{A} -bimodule morphism for every α . Since Δ_{WAP} is an $F(\mathcal{A})$ -bimodule morphism [1, Corollary 5.2], for every $\psi \in F(\mathcal{A})$ we obtain

(1)
$$\Delta_{WAP} \circ \rho_{\alpha}(\psi) = \Delta_{WAP}(\psi \bullet \overline{u_{\alpha}}) = \psi \Box \Delta_{WAP}(\overline{u_{\alpha}}) = \psi \Box \overline{\pi(u_{\alpha})} = \psi \cdot \pi(u_{\alpha}).$$

On the other hand

$$\begin{aligned} |\langle f, \psi \cdot \pi(u_{\alpha}) - \psi \rangle| &= |\langle \pi(u_{\alpha}) \cdot f, \psi \rangle - \psi(f)| \\ &= |\langle \pi(u_{\alpha}) \cdot f - f, \psi \rangle| \\ &\leq \|\psi\| \|\pi(u_{\alpha}) \cdot f - f\| \qquad , (f \in WAP(\mathcal{A}^*)). \end{aligned}$$

Thus, $\psi \cdot \pi(u_{\alpha}) \to \psi$ is an immediate consequence of $\pi(u_{\alpha}) \cdot f \to f$. It follows from (1), $\Delta_{WAP} \circ \rho_{\alpha}(\psi) \to \psi$. Therefore, $F(\mathcal{A})$ is approximately WAP-biprojective. \square

Recall that a Banach algebra \mathcal{A} is left φ -contractible, where φ is a linear multiplication functional on \mathcal{A} if there exists $m \in \mathcal{A}$ such that $am = \varphi(a)m$ and $\varphi(m) = 1$, for every $a \in \mathcal{A}$ [8]. The set of all wk^* -continuous homomorphism from \mathcal{A} into \mathbb{C} is denoted by $\Delta_{wk^*}(\mathcal{A})$.

Corollary 2.7. Let \mathcal{A} be a dual Banach algebra with a left approximate identity and $\varphi \in \Delta_{wk^*}(\mathcal{A})$. If $F(\mathcal{A})$ is approximately WAP-biprojective, then \mathcal{A} is left φ -contractible.

Proof. Applying part (ii) of Theorem 2.4, we see that the approximate WAP-biprojectivity of F(A) implies that A is approximately Connes biprojective. It now follows from the hypothesis and [15, Theorem 2.4] that A is left φ -contractible. \square

Remark 2.8. Parallel to [15, Theorem 2.4], we state the following result. Let \mathcal{A} be an approximately Connes biprojective dual Banach algebra and $\varphi \in \Delta_{wk^*}(\mathcal{A})$ such that \mathcal{A} has right approximate identity. Then, \mathcal{A} is right φ -contractible

Let \mathcal{A} be a Banach algebra and I be a totally ordered set. Then, the set of all $I \times I$ -upper triangular matrices with the usual matrix operations and the norm $\| [a_{i,j}]_{i,j\in I} \| = \sum_{i,j\in I} \| a_{i,j} \| < \infty$, becomes a Banach algebra and it is denoted by

$$UP(I, \mathcal{A}) = \left\{ \left[a_{i,j} \right]_{i,j \in I} : a_{i,j} \in A \text{ and } a_{i,j} = 0 \text{ for every } i > j \right\}.$$

Theorem 2.9. Let A be a dual Banach algebra with a right identity and $\varphi \in \Delta_{wk^*}(A)$. If I is a totally ordered set which has a smallest element, then F(UP(I,A)) is approximately WAP-biprojective if and only if |I| = 1 and F(A) is approximately WAP-biprojective.

Proof. Suppose that F(UP(I, A)) is approximately WAP-biprojective. By Theorem 2.4, UP(I, A) is approximately Connes biprojective. Since A has a right identity 1, UP(I, A) has a right approximate identity. Define a character $\psi_{\varphi}: UP(I, A) \longrightarrow \mathbb{C}$ through $\psi_{\varphi}([a_{ij}]) = \varphi(a_{i_0i_0})$. It is easy to checked that the wk^* -continuity of φ implies that the wk^* -continuity of ψ_{φ} . According by Remark 2.8, UP(I, A) is right ψ_{φ} -contractible. Therefore, there exists X in UP(I, A) satisfies $XY = \psi_{\varphi}(Y)X$ and $\psi_{\varphi}(X) = \varphi(X_{i_0i_0}) = 1$, for all $Y \in UP(I, A)$. Assume contrary to our claim, that I has at least two elements. Choose ε_{i_0j} be an element in UP(I, A) which (i_0, j) -th entry is 1 and others are zero, where $j \neq i_0$. Thus, $X\varepsilon_{i_0j} = \psi_{\varphi}(\varepsilon_{i_0j})X = 0$ and hence $X_{i_0i_0} = 0$, which is a contradiction with $\psi_{\varphi}(X) = \varphi(X_{i_0i_0}) = 1$.

The converse is clear. \Box

Let \mathcal{A} and \mathcal{B} be Banach algebras and X be a Banach \mathcal{A} -module. That is, X is a Banach left \mathcal{A} -module and a Banach right \mathcal{B} -module satisfying $(a \cdot x) \cdot b = a \cdot (x \cdot b)$ and $||a \cdot x \cdot b|| \leq ||a|| ||x|| ||b||$, for every $a \in \mathcal{A}$, $b \in \mathcal{B}$ and $x \in X$. Consider

$$Tri(\mathcal{A}, \mathcal{B}, X) = \begin{pmatrix} \mathcal{A} & X \\ 0 & \mathcal{B} \end{pmatrix},$$

with the usual matrix operations and the norm

$$\left\| \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right\| = ||a|| + ||x|| + ||b||, \quad (a \in \mathcal{A}, x \in X, b \in \mathcal{B}).$$

It can be checked that $Tri(\mathcal{A}, \mathcal{B}, X)$ becomes a Banach algebra which is called a triangular Banach algebra. Note that if \mathcal{A} and \mathcal{B} are dual Banach algebras and X be a normal dual Banach \mathcal{A} - \mathcal{B} -module, then $Tri(\mathcal{A}, \mathcal{B}, X)$ is a dual Banach algebra as well.

Recall from [2] that X is said to be essential provided that for every $x \in X$ there are $a \in \mathcal{A}$, $b \in \mathcal{B}$ and $y, z \in X$ such that $x = a \cdot y = z \cdot b$. If \mathcal{A} equipped with left approximate identity and X is essential, then \mathcal{A} has left approximate identity for X. Further, X is called right faithful if $\{b \in \mathcal{B} : X \cdot b = 0\} = 0$.

The following proposition is a consequences of [15, Theorem 3.1] and Theorem 2.4 and therefore the proof can be omitted.

Proposition 2.10. Let A and B be a dual Banach algebra equipped with left approximate identity and $\varphi \in \Delta_{wk^*}(B)$. Suppose that X is an essential normal dual Banach A-B-module

satisfying X is right faithful as a right \mathcal{B} -module. Then, $F(Tri(\mathcal{A}, \mathcal{B}, X))$ is not approximately WAP-biprojective.

A direct consequence of Proposition 2.10 is as follows.

Corollary 2.11. Let \mathcal{A} be a dual Banach algebra with a left approximate identity and $\varphi \in \Delta_{wk^*}(\mathcal{A})$. Then, $F(Tri(\mathcal{A}, \mathcal{A}, \mathcal{A}))$ is not approximately WAP-biprojective.

The augmentation character on semigroup algebra $l^1(S)$ defined by

$$\sum_{s \in S} \alpha_s \delta_s \mapsto \sum_{s \in S} \alpha_s,$$

and it is denoted by φ_S . According by [3, Definition 3.14], the semigroup S is weakly left (respectively, right) cancellative if $s^{-1}F = \{x \in S : sx \in F\}$ (resp., $Fs^{-1} = \{x \in S : xs \in F\}$) is finite for all $s \in S$ and every finite subset F of S. Moreover, S is weakly cancellative if it is both weakly left cancellative and weakly right cancellative.

Proposition 2.12. Let S be a unital weakly cancellative semigroup and $\varphi_S \in \Delta_{w^*}(l^1(S))$. Then, $F(l^1(S))$ be approximately WAP-biprojective if and only if S is finite.

Proof. Suppose that $F(l^1(S))$ be approximately WAP-biprojective. Note that δ_e is an identity for $l^1(S)$, where e is an identity for S. Using Corollary 2.7, $l^1(S)$ is left φ_S -contractible. By [5, Proposition 4.4], φ_S -Connes amenability $l^1(S)$ is equivalent with left φ_S -contractibility. As shown in [5, Theorem 4.3], S must be a group. Hence, by Theorem 6.1 of [12], S is compact. This fact together with being discrete of S show that S is finite. However, it is clear that if S is finite, then $F(l^1(S))$ must be approximately WAP-biprojective. \square

3. Examples

In this section, we present some examples pertinent to new concept and other notions.

- **Example 3.1.** (i) For a locally compact group G, suppose that F(M(G)) is approximately WAP-biprojective. By Theorem 2.4, M(G) is approximately Connes biprojective. Applying [15, Theorem 4.1], we deduce that G is amenable;
 - (ii) For an amenable, non-compact group G, it is known that the Banach algebra $L^1(G)$ is not approximately biprojective while $F(L^1(G))$ is Connes amenable [14]. Now, Corollary 2.5 from [16] implies that $F(L^1(G))$ is WAP-biprojective and so we conclude that $F(L^1(G))$ is approximately WAP-biprojective.

In the upcoming example we give a Banach algebra which is not WAP-biprojective but it is approximately WAP-biprojective.

Example 3.2. For an infinite commutative compact group G, it was shown in [18, §2] that the Banach algebra $L^2(G)$ with convolution multiplication is not biprojective. Moreover, It was proved in [16] that the Banach algebra $F(L^2(G))$ is not WAP-biprojective while it is pseudo-contractible. It now follows from Theorem 2.6 that $F(L^2(G)) = L^2(G)$ is approximately WAP-biprojective.

The following example emphasizes the fact that Theorem 2.3 does not hold for enveloping dual Banach algebras without identity. In fact, we give a Banach algebra which is approximately WAP-biprojective but not approximately Connes amenable.

Example 3.3. Consider the Banach algebra $\ell^1 = l^1(\mathbb{N})$ of all sequences $a = (a_n)$ of complex numbers with

$$||a|| = \sum_{n=1}^{\infty} |a_n| < \infty.$$

It is well known that ℓ^1 with pointwise multiplication is pseudo-contractible. This latter and Theorem 2.6 necessitate that $F(\ell^1)$ is approximately WAP-biprojective. Furthermore, by [11], ℓ^1 is not approximately Connes amenable. Applying Corollary 3.4 from [10], we observe that $F(\ell^1)$ is not approximately Connes amenable.

Example 3.4. Consider the Banach algebra ℓ^1 as in Example 3.3 with the product

$$(a*b)(n) = \begin{cases} a(1)b(1), & \text{if } n = 1, \\ a(1)b(n) + b(1)a(n) + a(n)b(n), & \text{if } n > 1, \end{cases}$$

for all $a, b \in \ell^1$. According by [15, Example 2.5] $(\ell^1, *)$ is not an approximately Connes biprojective dual Banach algebra. Using Part (ii) of Theorem 2.4, we find that $F(\ell^1, *)$ is not approximately WAP-biprojective.

4. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

- Y. Choi, E. Samei and R. Stokke, Extension of derivations, and Connes-amenability of the enveloping dual Banach algebra, Math. Scand., 117 (2015) 258-303.
- [2] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [3] H. G. Dales, A. T. M. Lau and D. Strauss, Banach Algebras on Semigroups and Their Compactifications, Vol. 205, American Mathematical Society, 2010.
- [4] G. H. Esslamzadeh, B. Shojaee and A. Mahmoodi, Approximate Connes-amenability of dual Banach algebras, Bull. Belg. Math. Soc. Simon stevin., 19 No. 2 (2012) 193-213.
- [5] A. Ghaffari and S. Javadi, φ-Connes amenability of dual Banach algebras, Bull. Iranian Math. Soc., 43 No. 1 (2017) 25-39.

- [6] F. Ghahramani and Y. Zang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Philos. Soc., 142 No. 1 (2007) 111-123.
- [7] A. Y. Helemskii, The Homology of Banach and Topological Algebras, Springer Dordrecht, 1989.
- [8] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 1 No. 193 (2009) 53-78.
- [9] A. T. M. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal., 145 (1997) 175-204.
- [10] A. Mahmoodi, Approximate injectivity of dual Banach algebras, Bull. Belg. Math. Soc. Simon stevin., 20 (2013) 831-842.
- [11] A. Mahmoodi, Connes amenability-like properties, Studia Math., 220 (2014) 55-72.
- [12] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Stud. Math., 202 No. 3 (2011) 205-225.
- [13] V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001) 47-66.
- [14] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 95 (2004) 124-144.
- [15] A. Sahami, S. F. Shariati and A. Pourabbas, Approximate Connes-biprojectivity of dual Banach algebras, Asian Eur. J. Math., 14 (2021) 2150025.
- [16] S. F. Shariati, A. Pourabbas and A. Sahami, WAP-biprojectivity of the enveloping dual Banach algebras, Boll. Unione. Mat. Ital., 13 (2020) 91-101.
- [17] A. Shirinkalam and A. Pourabbas, On approximate Connes-amenability of enveloping dual Banach algebras, New York J. Math., 23 (2017) 699-709.
- [18] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc., 127 (1999) 3237-3242.

Amir Sahami

Department of Mathematics, Faculty of Basic Science,

Ilam University, P.O. Box 69315-516, Ilam, Iran.

a.sahami@ilam.ac.ir

Seyedeh Fatemeh Shariatil

Department of Mathematics and Computer Science,

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

fatemehshariati32@gmail.com

Abasalt Bodaghi

Department of Mathematics, West Tehran Branch,

Islamic Azad University, Tehran, Iran.

abasalt.bodaghi@gmail.com