Double derivations of $n$-Hom-Lie color algebras

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Sciences, Arak University, 85156-8-8349, Po.Box: 879, Arak, Iran.

10.22034/as.2024.20876.1689

Abstract

This paper aims to study the double derivation algebra ${\mathcal D}(\mathcal{L})$ of $n$-Hom-Lie color algebra $\mathcal{L}$ and describe the relation between ${\mathcal D}(\mathcal{L})$ and the usual derivation Hom-Lie color algebra $Der(\mathcal{L})$. We prove that the inner derivation algebra $Inn(\mathcal{L})$ is an ideal of the double derivation algebra ${\mathcal D}(\mathcal{L})$. We also show that if $\mathcal{L}$ is a perfect $n$-Hom Lie color algebra with certain constraints on the base field, then the centralizer of $Inn(\mathcal{L})$ in ${\mathcal D}(\mathcal{L})$ is trivial. In addition, we obtain that for every centerless perfect $n$-Hom-Lie color algebra $\mathcal{L}$, the triple derivations of the derivation algebra $Der(\mathcal{L})$ are exactly the derivations of $Der(\mathcal{L})$.

Keywords


[1] F. Ammar, A. Makhlouf and S. Silvestrov, Ternary q−Virasoro-Witt Hom-Nambu-Lie algebras, J. Phys. A-Math., 43 No. 26 (2010) 265204.
[2] F. Ammar, S. Mabrouk, and A. Makhlouf, Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Physics, 61 No. 10 (2011) 1898-1913.
[3] J. Arnlind, A. Makhlouf and S. Silvestrov, Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras, J. Math. Phys., 52 No. 12 (2011) 123502.
[4] S. Asif and Y. Wang, On the Lie triple derivations of Hom-Lie superalgebra, Asian-Eur. J. Math., 16 No. 10 (2023) 2350193.
[5] S. Asif and Z. Wu, Generalized Lie triple derivations of Lie color algebras and their subalgebras, Symmetry, 13 No. 7 (2021) 1280.
[6] S. Asif, L. Luo, Y. Hong and Z. Wu, Conformal triple derivations and triple homomorphisms of Lie conformal algebras, Algebra Colloq., 30 No. 02 (2023) 263-280.
[7] A. Ataguema, A. Makhlouf and S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys., 50 No. 8 (2009) 083501.
[8] R. Bai, Y. Gao, Y. Zhang and Z. Li, Double derivations of n-Lie algebras, Bull. Iranian Math. Soc., 43 No. 3 (2017) 897-910.
[9] Bakayoko, I., Silvestrov, S. (2020). Multiplicative n-Hom-Lie Color Algebras, In S. Silvestrov, A. Malyarenko, M. Rančić (eds) Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, Vol. 317, Springer, Cham.
[10] P. D. Beites, I.Kaygorodov, and Y. Popov, Generalized derivations of multiplicative n-ary Hom-Ω color algebras, Bull. Malays. Math. Sci. Soc., 41 No. 1 (2019) 315-335.
[11] L. Chen, Y. Ma, and L. Ni, Generalized Derivations of Lie color algebras, Results Math., 63 No. 3-4 (2013) 923-936.
[12] V. Filippov, n-Lie algebras, Sib. Math. J., 26 No. 6 (1985) 879-891.
[13] V. Filippov, δ−Derivations of Lie algebras, Sib. Math. J., 39 No. 6 (1998) 1218-1230.
[14] V. Filippov, δ−Derivations of prime Lie algebras, Sib. Math. J., 40 No. 1 (1999) 174-184.
[15] V. Filippov, δ−Derivations of prime alternative and Malcev algebras, Algebra Log., 39 No. 5 (2000) 354-358.
[16] J. T. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using σ−derivations, J. Algebra, 295 No. 2 (2006) 314-361.
[17] I. Herstein, Jordan derivations of prime rings, Proc. Am. Math. Soc., 8 No. 6 (1957) 1104-1110.
[18] Sh. M. Kasymov, On a theory of n-Lie algebras, Algebra Log., 26 No. 3 (1987) 155-166.
[19] I. Kaygorodov, δ−derivations of n−ary algebras, Izv. Math., 76 No. 5 (2012) 1150-1162.
[20] I. Kaygorodov and Y. Popov, A characterization of nilpotent nonassociative algebras by invertible Leibnizderivations, J. Algebra, 456 (2016) 323-347.
[21] I. Kaygorodov and Y. Popov, Generalized derivations of (color) n-ary algebras, Linear Multilinear Algebra, 64 No. 6 (2016) 1086-1106.
[22] V. Khalili, Generalized derivations of Hom–Poisson color algebras, São Paulo J. Math. Sci., 16 No. 2 (2022) 786-802.
[23] V. Khalili, On the derivations of BiHom-Poisson superalgebras, Asian-Eur. J. Math., 15 No. 08 (2022) 2250147.
[24] G. Leger and E. Luks, Generalized derivations of Lie algebras, J. Algebra, 228 No. 1 (2000) 165-203.
[25] H. Li and Y. Wang, Generalized Lie triple derivations, Linear Multilinear Algebra, 59 No. 3 (2011) 237-247.
[26] Y. Li, n-Derivations of Lie color algebras, Filomat, 35 No. 9 (2021) 3063-3070.
[27] H. Lian and C. Chen, N-Derivations for Finitely Generated Graded Lie Algebras, Algebra Colloq., 23 No. 02 (2016) 205-212.
[28] D. Müller, Isometries of bi-invariant pseudo-Riemannian metries on Lie groups, Geom. Dedicata, 29 (1989) 65-96.
[29] Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev. D, 7 No. 8 (1973) 2405-2412.
[30] B. Sun, L. Chen and X. Zhou, Double Derivations of n-Lie Superalgebras, Algebra Colloq., 25 No. 1 (2018) 161-180.
[31] Takhtajan L., On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160 (1994) 295-315.
[32] L. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n−gebras, St. Petersburg Math. J., 6 No. 2 (1995) 429-438.
[33] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys., 62 No. 2 (2012) 506-522.
[34] R. Zhang and Y. Zhang, Generalized derivations of Lie superalgebras, Comm. Alg., 38 No. 10 (2018) 3737-3751.
[35] Zhou J., Triple derivations of perfect Lie algebras, Comm. Algebra, 41 No. 5 (2013) 1647-1654.
[36] J. Zhou and G. Fan, Generalized derivations of Hom-Lie color algebra, Pure math., 6 No. 3 (2016) 182-189.
[37] J. Zhou and G. Fan, Generalized Derivations of n-Hom Lie superalgebras, Math. AEterna, 6 No. 4 (2016) 533-550.
[38] J. Zhou, L. Chen and Y. Ma, Triple derivations and triple homomorphisms of perfect Lie superalgebras, Indag. Math., 28 No. 2 (2015) 436-445.
[39] J. Zhou, L. Chen and Y. Ma, Generalized Derivations of Lie triple systems, Open Mathematics, 14 No. 1 (2016) 260-271.
[40] J. Zhou, L. Chen and Y. Ma, Generalized Derivations of Hom-Lie triple systems, B. MALAYS. MATH. SCI. SO., 41 (2018) 637-656.