[1] A. L. B. Correia and S. Zarzuela, On the asymptotic properties of the Rees power of a module, J. Pure Appl. Algebra, 207 No. 2 (2006) 373-385.
[2] R. C. Cowsik, Symbolic powers and numbers of defining equations, Lecture Notes in Pure and Appl. Math., 91 (1987) 13-14.
[3] S. Goto, M. Herrmann, and K. Nishida, On the structure of Noetherian symbolic Rees algebras, Manuscripta Math., 67 No. 1 (1990) 197-225.
[4] S. Goto, K. Nishida, and K. I. Watanabe, Non-Cohen-Macaulay symbolic blowups for space monomial curves and counterexamples to Cowsik’s question, Proc. Amer. Math. Soc., 120 No. 2 (1994) 383-392.
[5] C. Huneke, On the finite generation of symbolic blow-ups, Math. Z., 179 No. 4 (1982) 465-472.
[6] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J., 34 No. 2 (1987) 293-318.
[7] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cam. Philos. Soc., 50 No. 2 (1954) 145-158.
[8] D. Rees, On a problem of Zariski, Illinois J. Math., 2 (1958) 145-149.
[9] P. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc., 94 No. 4 (1985) 589-592.
[10] A. K. Singh, Multi-symbolic Rees algebras and strong F-regularity, Math. Z., 235 No. 2 (2000) 335-344.
[11] P. Singh and S. D. Kumar, Reductions in the Rees algebra of modules, ALGEBR. REPRESENT. TH., 17 (2014) 1785-1795.
[12] I. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules, Cambridge University Press, Cambridge, 2006.