On the subspace distance of the subspace codes

Document Type : Research Paper

Authors

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

Let $\mathcal{P}_q(n)$ be the set of all subspaces in the vector space $\mathbb{F}_q^n$. There is a subspace distance $d_S(U,V)$ between any two subspaces $U$ and $V$. A subspace code is also a subset of $\mathcal{P}_q(n)$. It is known that $d_S(U,V)\geq d_H(\nu(\pi U),\nu(\pi V))$, where $\pi\in S_n$, $\nu(U)$ denotes the pivot vector of $E(U)$ and $E(U)$ is the reduced row echelon form of the generator matrix of $U$. In this paper, we show that if $E(U)$ and $E(V)$ have at most one non-zero entry in each rows and each columns then the equality holds. Moreover, we introduce the sets $\mathcal{G}_{U,V}=\{\pi\in S_n\mid d_S(U,V)=d_H(\nu(\pi U),\nu(\pi V))\}$ for any $U,V\in\mathcal{P}_q(n)$ and examine them in the spaces $\mathcal{P}_2(4)$, $\mathcal{P}_2(5)$, $\mathcal{P}_2(6)$ and $\mathcal{P}_3(4)$. It is shown that the groups $1$, $\mathbb{Z}_2$, $\mathbb{Z}_2\times \mathbb{Z}_2$, $S_3$, $S_4$ and $1$, $\mathbb{Z}_2$, $\mathbb{Z}_2\times \mathbb{Z}_2$, $S_3$, $D_8$, $S_3\times \mathbb{Z}_2$, $S_4$, $S_5$ appears between these sets in $\mathcal{P}_2(4)$ and $\mathcal{P}_2(5)$, respectively. Moreover, the groups $1$, $\mathbb{Z}_2$, $\mathbb{Z}_2\times \mathbb{Z}_2$, $S_3$, $D_8$, $\mathbb{Z}_2\times \mathbb{Z}_2 \times \mathbb{Z}_2$, $S_3\times \mathbb{Z}_2$, $D_8\times \mathbb{Z}_2$, $S_4$, $S_3\times S_3$, $S_4\times \mathbb{Z}_2$, $(S_3\times S_3)$:$2$, $S_5$, $S_6$ and $1$, $\mathbb{Z}_2$, $\mathbb{Z}_2\times \mathbb{Z}_2$, $S_3$, $D_8$, $S_4$ appears between these sets in $\mathcal{P}_2(6)$ and $\mathcal{P}_3(4)$, respectively.
 

Keywords


[1] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
[2] W. C. Huffman, J. -L. Kim and P. Solé, Concise Encyclopedia of Coding Theory, Chapman and Hall/CRC,
2021.
[3] S. Kurz, Construction and bounds for subspace codes, (2023) arXiv:2112.11766v2.
[4] S. Ling and C. Xing, Coding Theory, A First Course, Cambridge University Press, 2004.
[5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.
[6] N. Raviv, Subspace Codes and Distributed Storage Codes, PhD thesis, Computer Science Department, Technion, 2017.
[7] H. Zhang and C. Tang, Further constructions of large cyclic subspace codes via Sidon spaces, Linear Algebra Appl. 661 (2023) 106-115.
[8] F. Zullo, Multi-orbit cyclic subspace codes and linear sets, Finite Fields Their Appl. 87 (2023) 102153.