Some results on the sum-annihilating essential submodule graph

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Science, University of Payame Noor (PNU), P.O. Box 19395-3697, Tehran, Iran

Abstract

Consider a commutative ring $R$ with a non-zero identity $1\neq 0$, and let $M$ be a non-zero unitary module over $R$. In this document, our goal is to present the sum-annihilating essential submodule graph $\mathbb{AE}^{0}_{R}(M)$ and its subgraph $\mathbb{AE}^{1}_{R}(M)$ of a module $M$ over a commutative ring $R$ which is described in the following way: The vertex set of graph $\mathbb{AE}^{0}_{R}(M)$ (resp., $\mathbb{AE}^{1}_{R}(M)$) is the collection of all (resp., non-zero proper) annihilating submodules of $M$ and two separate annihilating submodules $N$ and $K$ are connected anytime $N+K$ is essential in $M$. We study and investigate the basic properties of graphs $\mathbb{AE}^{i}_{R}(M)$ ($i=0, 1$) and will present some related results. Additionally, we explore how the properties of graphs interact with the algebraic structures they represent.

Keywords


[1] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., (2008) 1-10.
[2] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8 No. 1 (2009) 105-113.
[3] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim., 1 No. 2 (2016) 117-135.
[4] J. Amjadi, The essential ideal graph of a commutative ring, Asian-Eur. J. Math., 11 No. 4 (2018) 1850058.
[5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[6] S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules and the annihilator essential graph, Acta Math. Vietnam., 44 (2019) 905-914.
[7] A. Barnard, Multiplication modules, J. Algebra, 71 No. 1 (1981) 174-178.
[8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10 No. 4 (2011) 727-739.
[9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 No. 4 (1988) 755-779.
[10] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra, 19 No. 7 (1991) 1867-1892.
[11] G. Hinkle and J. Huckaba, The generalized Kronecker function and the ring R(X), J. reine angew. Math., 292 (1977) 25-36.
[12] C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with property (A) and their extensions, J. Algebra, 315 No. 2 (2007) 612-628.
[13] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago and London, 1974.
[14] T. Y. Lam, Lectures on Modules and Rings, Springer, 1999.
[15] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli., 33 No. 1 (1984) 61-69.
[16] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 No. 6 (1992) 1803-1817.
[17] S. Rajaee, The annihilators comaximal graph, Asian-Eur. J. Math., 15 No. 8 (2022) 2250153.
[18] S. Rajaee and A. Abbasi, Some results on the comaximal colon ideal graph, J. Math. Ext., 16 No. 11 (2022) (8)1-19.
[19] E. Snapper, Completely Primary Rings. IV, Ann. of Math., 55 (1952) 46-64.
[20] A. Tuganbaev, Rings Close to Regular, Kluwer Academic, 2002.
[21] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Springer Singapore, 2016.