

Algebraic Structures and Their Applications



Algebraic Structures and Their Applications Vol. 11 No. 4 (2024) pp 321-335.

**Research** Paper

# SOME RESULTS ON THE SUM-ANNIHILATING ESSENTIAL SUBMODULE GRAPH

SAEED RAJAEE\*

ABSTRACT. Consider a commutative ring R with a non-zero identity  $1 \neq 0$ , and let M be a non-zero unitary module over R. In this document, our goal is to present the sum-annihilating essential submodule graph  $\mathbb{AE}_R^0(M)$  and its subgraph  $\mathbb{AE}_R^1(M)$  of a module M over a commutative ring R which is described in the following way: The vertex set of graph  $\mathbb{AE}_R^0(M)$ (resp.,  $\mathbb{AE}_R^1(M)$ ) is the collection of all (resp., non-zero proper) annihilating submodules of Mand two separate annihilating submodules N and K are connected anytime N + K is essential in M. We study and investigate the basic properties of graphs  $\mathbb{AE}_R^i(M)$  (i = 0, 1) and will present some related results. Additionally, we explore how the properties of graphs interact with the algebraic structures they represent.

DOI: 10.22034/as.2024.21047.1697

MSC(2010): Primary: 13C13, 13C99, 05C75, 16D80.

Keywords: Annihilating submodule, Essential submodule, Graphs of submodules.

Received: 29 December 2023, Accepted: 02 June 2024.

<sup>\*</sup>Corresponding author

 $<sup>\</sup>ensuremath{\textcircled{O}}$  2024 Yazd University.

## 1. INTRODUCTION

In the present paper, M is a non-zero unital module over a commutative ring R with nonzero identity element. In the case of a ring R, the collection of whole ideals in R is represented by  $\mathbb{I}(R)$  and also  $\mathbb{I}^*(R) = \mathbb{I}(R) \setminus \{0, R\}$  is the collection of entire non-zero proper (non-trivial) ideals in R. In addition, the collection of whole submodules of M is represented by the symbol  $\mathbb{S}(M)$  and  $\mathbb{S}^*(M) = \mathbb{S}(M) \setminus \{0, M\}$  is the collection of entire non-zero proper submodules of M. In addition, J(R) will represent the Jacobson radical of R, and it is the intersection of collection of maximal ideals in R and also it is the sum of all superfluous ideals in R. If R does not have superfluous ideals, then we put J(R) = 0. If N is a submodule of M, then the residual of N by M will represent by  $(N:_R M)$ . This refers to the collection of elements r in R such that when multiplied by M, the result is contained within N i.e.,  $rM \subseteq N$ . For any subset Y of R,  $\operatorname{ann}_M(Y)$  represents as the collection of elements m in M where m multiplied by a equals 0 for every  $a \in Y$ . In particular, for an element x in R,  $\operatorname{ann}_M(x) = \{m \in M : xm = 0\}$  is named an annihilator submodule of M. Also,  $\operatorname{ann}_R(M) = (0:_R M)$  represents the annihilator of M. An element x in R is named a zero-divisor on M whenever there exists a non-zero element m in M such that xm = 0, i.e.,  $\operatorname{ann}_M(x) \neq 0$ . By  $Z_R(M)$  (briefly, Z(M)), we express the collection of entire zero-divisors of R on M, i.e.,  $Z(M) = \{r \in R : ann_M(r) \neq 0\}$ . When R is considered as an R-module, then we use Z(R) as a substitute for  $Z_R(R)$ . A non-empty subset S of R is named multiplicatively closed subset (briefly, m.c.s.) exactly when  $0 \in S$ ,  $1 \notin S$  and  $xy \in S$  for all  $x, y \in S$ . For instance, S = R - Z(M) is a m.c.s. of R. For further information, we direct the reader to [5, 13, 14, 21].

A ring R has property (A), whenever each finitely generated ideal I contained in Z(R) has a non-zero annihilator, i.e.,  $\operatorname{ann}_R(I) \neq 0$ , see [11, 12]. In [10], the author investigated rings with property (A) and he named them McCoy. A Noetherian ring is an instance of a McCoy ring. A McCoy module is an R-module M such that for each finitely generated ideal I of R where I is contained in Z(M),  $\operatorname{ann}_M(I) \neq 0$ . An R-module M is named super coprimal when for each finite subset X in Z(M),  $\operatorname{ann}_M(X) \neq 0$ .

A prime submodule P of M is a proper submodule such that for  $r \in R$  and  $m \in M$ , in the event that  $rm \in P$  gives the result that either  $r \in (P :_R M)$  or  $m \in P$ . The collection of all prime submodules of M is denoted by  $\operatorname{Spec}(M)$ . If P is a prime submodule, then  $\mathfrak{p} := (P :_R M)$  is a prime ideal of R and P is named the  $\mathfrak{p}$ -prime submodule of M, see [16]. Equivalently, for the ideal I of R and m in M, whenever  $Im \subseteq P$ , then either  $I \subseteq \operatorname{ann}_R(M/P)$ or  $m \in P$ . Note that when Q is a maximal submodule of M, then  $Q \in \operatorname{Spec}(M)$  and also  $\mathfrak{m} = (Q : M) \in \operatorname{Max}(R)$  such that  $\operatorname{Max}(R)$  is the set of all maximal ideals of R. In this case, we state that Q is an  $\mathfrak{m}$ -maximal submodule of M, see [15, p. 61]. The set of all minimal (resp., maximal) submodules of M is denoted by  $\operatorname{Min}(M)$  (resp.,  $\operatorname{Max}(M)$ ). An R-module M is named *prime* whenever for each non-zero submodule X of M,  $\operatorname{ann}(X) = \operatorname{ann}(M)$ . Also, M is a *multiplication module* whenever for each submodule N of M there exists an ideal I of R where N = IM. In addition, in this case,  $N = (N :_R M)M$ , refer to [7, 9].

Dually, M is referred to as a *comultiplication module* whenever for each submodule N of M, there exists an ideal I of R such that N is equal to the set of elements in M that are annihilated by I, i.e.,  $N = (0 :_M I)$ , see [1]. For instance,  $M = \mathbb{Z}_{2^{\infty}}$  as a  $\mathbb{Z}$ -module is comultiplication because every proper submodule of M is as  $(0 :_M 2^k \mathbb{Z})$  for  $k = 0, 1, \ldots$ . Obviously, M is comultiplication exactly when for every submodule N of M, we have the relation  $\operatorname{ann}_M(\operatorname{ann}_R(N)) = N$ . The ideal I of R where  $N = (0 :_M I)$  is unique when M is comultiplication and in addition, it has the double annihilator condition (briefly, DAC) that is,  $\operatorname{ann}_R(\operatorname{ann}_M(I)) = I$  for each ideal I of R. Such modules are named strong comultiplication modules. For a positive integer n and a prime number p the  $\mathbb{Z}$ -modules  $\mathbb{Z}_{p^{\infty}}$  and  $\mathbb{Z}_n$  are comultiplication whereas they are not strong comultiplication, refer to [2]. By [19, Theorem 1.1], when R is completely primary, then every ideal of R is the annihilator of some subset of R exactly when R has a unique minimal ideal. In simple terms, a ring R is considered a fully elemental annihilator ring if, for every ideal I of R, there exists an element x in R such that I is equal to the set of all elements that annihilate x in R, i.e.,  $I = \operatorname{ann}_R(x)$ . This is true exactly when R is a direct sum of completely primary principal ideal rings.

A lot of research have been done to associate graphs with algebraic structures such as rings or modules, the reader refers to [3, 4, 6, 8, 17, 18]. An ideal A of R is named an *annihilating ideal*, whenever  $\operatorname{ann}_R(A) \neq 0$ . It follows that there exists a non-zero ideal B of R such that AB = 0. The collection of all ideals with non-zero annihilators is denoted by  $\mathbb{A}(R)$ .

Recently in [17], the author introduced the annihilators comaximal graph of  $G^*(M)$ . In addition, in [18], the authors studied the comaximal colon ideal graph of  $C^*(M)$ .

Motivated by [3, 4, 6, 8, 17, 18], we introduce the sum-annihilating essential submodule graph  $\mathbb{AE}_R^0(M)$  and its subgraph  $\mathbb{AE}_R^1(M)$  as follows: The vertex set of graph  $\mathbb{AE}_R^0(M)$  (resp.,  $\mathbb{AE}_R^1(M)$ ) is the collection of all (resp., non-zero proper) annihilating submodules of M. Two separate vertices  $N = \operatorname{ann}_M(I)$  and  $K = \operatorname{ann}_M(J)$  are connected whenever N + K is essential in M. In particular, if we consider M = R as an R-module, then the annihilating submodules of M are the same as the annihilating ideals of R. Additionally, two vertices  $I = \operatorname{ann}_R(A)$ and  $J = \operatorname{ann}_R(B)$  such that  $A, B \in \mathbb{I}(R)$  are adjacent in  $\mathbb{AE}_R^0(R)$  whenever I + J is essential in R. In the case of, M = R,  $\mathbb{AE}_R^1(R)$  is the subgraph of  $\mathcal{E}_R$  generated by the collection of all non-trivial annihilating ideals of R. In particular, if M = R is a comultiplication R-module, then  $\mathbb{AE}_R^1(R)$  and  $\mathcal{E}_R$  are the same. This article aims to explore certain characteristics of  $\mathbb{AE}_R^i(M)$  for i = 0, 1. The diameter of a graph G, represented as diam(G), is the maximum distance between each two vertices in G. The girth of a graph G, represented as gr(G), is the length of the shortest cycle in G when it contains a cycle, otherwise the girth of G is considered infinite. In a graph, a clique is the largest fully connected subgraph, and the number of vertices in the largest clique of graph G, represented as  $\omega(G)$ , is referred to as the clique number of G.

### 2. The sum-annihilating essential submodule graph

In this section, we present the sum-annihilating essential graph  $\mathbb{AE}^0_R(M)$  and its subgraph  $\mathbb{AE}^1_R(M)$  which are simple undirected graphs, with vertices set

$$\mathcal{V}(\mathbb{A}\mathbb{E}^0_R(M)) = \{ N \in \mathbb{S}(M) \mid N = \operatorname{ann}_M(I), \text{ for some } I \in \mathbb{I}(R) \},\$$

and

$$V(\mathbb{A}\mathbb{E}^1_R(M)) = \{ N \in \mathbb{S}^*(M) \mid N = \operatorname{ann}_M(I), \text{ for some } I \in \mathbb{I}^*(R) \}.$$

Two separate vertices N and K in  $\mathbb{AE}_R^i(M)$  (i = 0, 1) are connected only when N + K is essential in M.

We start by introducing the following definition.

**Definition 2.1.** Let us have a non-zero module M over a ring R. A submodule N of M is considered an *annihilating submodule* of M if there is a (non-zero proper) ideal I of R such that N equals the annihilator of M with respect to I, i.e.,  $N = \operatorname{ann}_M(I) = (0:_M I)$ .

Clearly,  $\operatorname{ann}_M(0) = M$ ,  $\operatorname{ann}_M(R) = 0_M$  are trivial annihilating submodules of M. Particularly, if R is a principal ideal domain, then for each  $a \in Z(M)$ ,  $\operatorname{ann}_M(a) = \operatorname{ann}_M(Ra) \neq 0$ , is an annihilating submodule of M.

**Definition 2.2.** Consider *M* as an *R*-module.

- (i) The sum-annihilating essential submodule graph of M, represented as  $\mathbb{AE}^0_R(M)$  is an undirected graph with the vertex collection of entire annihilating submodules of M and two different vertices  $N = \operatorname{ann}_M(I)$  and  $K = \operatorname{ann}_M(J)$  are connected in  $\mathbb{AE}^0_R(M)$ , whenever N + K is an essential submodule of M.
- (ii) The strong sum-annihilating essential submodule graph of M, denoted by  $\mathbb{AE}^{1}_{R}(M)$  is a simple undirected graph with the vertex set of all non-trivial annihilating submodules of M and two distinct vertices N and K are adjacent in  $\mathbb{AE}^{1}_{R}(M)$ , whenever N + K is an essential submodule of M.

Clearly,  $\mathbb{AE}^0_R(M)$  is a star graph that has universal vertex  $M = \operatorname{ann}_M(0)$ , because for each annihilating submodule N of M, the sum of N and M equals M is essential in M. Moreover,  $\mathbb{AE}^0_R(M)$  is not an empty graph, since 0 - M is an edge. Also,  $\mathbb{AE}^1_R(M)$  is a subgraph of  $\mathbb{AE}^0_R(M)$  where does not take zero submodule and M to be vertices of  $\mathbb{AE}^1_R(M)$ . If there is no confusion regarding the ring we will write  $\mathbb{AE}^{i}(M)$  instead of  $\mathbb{AE}^{i}_{R}(M)$  for i = 0, 1. In particular, when we view R as an R-module, we use  $\mathbb{AE}^{i}(R)$  instead of  $\mathbb{AE}^{i}_{R}(R)$  for i = 0, 1. We present the degrees of vertex N in  $\mathbb{AE}^{0}(M)$  and  $\mathbb{AE}^{1}(M)$ , respectively by  $\deg_{0}(N)$  and  $\deg_{1}(N)$ .

Note 2.3. Let M be a non-zero R-module.

- (i) For each  $a \in R$ ,  $\operatorname{ann}_M(a) = \operatorname{ann}_M(Ra) \neq 0$  is a vertex in  $\mathbb{AE}^1_R(M)$  if and only if  $a \in \mathbb{Z}(M) \setminus \{0\}$ .
- (ii) In general, Z(M) may not be an ideal of R for an R-module M. For instance, consider M = Z<sub>2</sub> × Z<sub>3</sub> as a Z-module. Then one can check that Z(M) = 2Z ∪ 3Z. Of course, in this case, since Z is a PID, M is McCoy thus, for each finitely generated ideal I ⊆ Z(M), ann<sub>M</sub>(I) ≠ 0 is a vertex of AE<sup>0</sup><sub>R</sub>(M).

**Example 2.4.** (i) For a simple *R*-module M,  $\mathbb{AE}^{0}_{R}(M)$  is of the form 0 - M, and  $\mathbb{AE}^{1}_{R}(M)$  is the null graph.

(ii) Let us propose  $M = \mathbb{Z}$  as an  $\mathbb{Z}$ -module. Then  $(0 :_{\mathbb{Z}} k\mathbb{Z}) = 0$  for each ideal  $k\mathbb{Z}$  in  $\mathbb{Z}$  with  $0 \neq k \in \mathbb{N}$  and for k = 0,  $(0 :_{\mathbb{Z}} 0) = \mathbb{Z}$ . Therefore,  $\mathbb{Z}$  has no non-trivial annihilating submodule as a  $\mathbb{Z}$ -module. Thus,  $\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z})$  has only two vertices 0 and  $\mathbb{Z}$  and only an edge  $0 - \mathbb{Z}$ . Also,  $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z})$  is a null graph.

(iii) Consider  $M = \mathbb{Z}_6$  as an  $\mathbb{Z}$ -module. Then  $\langle \bar{2} \rangle = \operatorname{ann}_{\mathbb{Z}_6}(3\mathbb{Z})$ , and  $\langle \bar{3} \rangle = \operatorname{ann}_{\mathbb{Z}_6}(2\mathbb{Z})$  are nontrivial annihilating submodules of  $\mathbb{Z}_6$ . Clearly,  $\langle \bar{2} \rangle + \langle \bar{3} \rangle = \mathbb{Z}_6$  which is an essential submodule of  $\mathbb{Z}_6$ . Therefore,  $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_6)$  is the graph with only an edge  $\langle \bar{2} \rangle - \langle \bar{3} \rangle$ , see Figure 1.



FIGURE 1.  $\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z}_6)$   $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_6)$ .

In general, take  $M = \mathbb{Z}_{p_1 \cdots p_s}$  as a  $\mathbb{Z}$ -module such that all  $p_i$ 's  $(1 \leq i \leq s)$  are distinct prime numbers, then  $\langle \bar{p}_i \rangle = \operatorname{ann}_M(p_1 \cdots p_{i-1}p_{i+1} \cdots p_s \mathbb{Z})$  is a non-trivial annihilating submodule of M for every  $1 \leq i \leq s$  and  $\langle \bar{p}_i \rangle + \langle \bar{p}_j \rangle = M$  for each  $1 \leq i \neq j \leq s$ . Hence, the subgraph of  $\mathbb{AE}^1_{\mathbb{Z}}(M)$  generated by  $\{\langle \bar{p}_1 \rangle, \cdots, \langle \bar{p}_s \rangle\}$  is the maximal complete subgraph of  $\mathbb{AE}^1_{\mathbb{Z}}(M)$ . In fact,  $\mathbb{AE}^1_{\mathbb{Z}}(M)$  has the maximal complete subgraph isomorphic to  $K_s$ . So,  $\omega(\mathbb{AE}^0_{\mathbb{Z}}(M)) = s + 1$ and  $\omega(\mathbb{AE}^1_{\mathbb{Z}}(M)) = s$ , because the subgraph of  $\mathbb{AE}^0_{\mathbb{Z}}(M)$  generated by  $\{\langle \bar{p}_1 \rangle, \cdots, \langle \bar{p}_s \rangle, M\}$  is the maximal complete subgraph. For example, we have  $\omega(\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_6)) = 2$  and  $\omega(\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z}_6)) = 3$ . (iv) Consider the uniserial  $\mathbb{Z}$ -module  $M = \mathbb{Z}_{16}$ . Then  $\langle \bar{2} \rangle = \operatorname{ann}_{\mathbb{Z}_{16}}(8\mathbb{Z}), \langle \bar{4} \rangle = \operatorname{ann}_{\mathbb{Z}_{16}}(4\mathbb{Z}),$ and  $\langle \bar{8} \rangle = \operatorname{ann}_{\mathbb{Z}_{16}}(2\mathbb{Z})$  are all non-trivial annihilating submodules of M. One can check that the graphs  $\mathbb{AE}^{0}_{\mathbb{Z}}(\mathbb{Z}_{16})$  and  $\mathbb{AE}^{1}_{\mathbb{Z}}(\mathbb{Z}_{16})$  are as in Figure 2.



**Example 2.5.** (i) Take  $M = \mathbb{Z}_{12}$  as a  $\mathbb{Z}$ -module. Then  $\langle \bar{2} \rangle = \operatorname{ann}_M(6\mathbb{Z}), \langle \bar{3} \rangle = \operatorname{ann}_M(4\mathbb{Z}), \langle \bar{4} \rangle = \operatorname{ann}_M(3\mathbb{Z})$  and  $\langle \bar{6} \rangle = \operatorname{ann}_M(2\mathbb{Z})$ . One can check that the graphs  $\mathbb{AE}^i_{\mathbb{Z}}(\mathbb{Z}_{12})$  (i = 0, 1) are as Figure 3.



(ii) Take  $M = \mathbb{Z}_{18}$  as a  $\mathbb{Z}$ -module. Then  $\langle \bar{2} \rangle = \operatorname{ann}_M(9\mathbb{Z}), \langle \bar{3} \rangle = \operatorname{ann}_M(6\mathbb{Z}), \langle \bar{6} \rangle = \operatorname{ann}_M(3\mathbb{Z})$ and  $\langle \bar{9} \rangle = \operatorname{ann}_M(2\mathbb{Z})$ . Clearly,  $\langle \bar{3} \rangle$  is the only proper essential submodule of M. Also, one can check that the graphs  $\mathbb{AE}^i_{\mathbb{Z}}(\mathbb{Z}_{18})$  (i = 0, 1) are as Figure 4.

**Proposition 2.6.** Let us see  $M = \mathbb{Z}_{2^n}$  as a  $\mathbb{Z}$ -module. Then we have  $\omega(\mathbb{AE}^0_{\mathbb{Z}}(M)) = n + 1$ and  $\omega(\mathbb{AE}^1_{\mathbb{Z}}(M)) = n - 1$ .

*Proof.* Note that the uniserial  $\mathbb{Z}$ -module  $M = \mathbb{Z}_{2^n}$  is an Artinian  $\mathbb{Z}$ -module such that  $M \supset \langle \bar{2} \rangle \supset \langle \bar{4} \rangle \supset \cdots \supset \langle \overline{2^{n-1}} \rangle \supset 0$  is the only chain of all its submodules. One can check that  $\mathbb{AE}^0_{\mathbb{Z}}(M) \cong K_{n+1}$  and  $\mathbb{AE}^1_{\mathbb{Z}}(M) \cong K_{n-1}$ , as needed.  $\Box$ 



FIGURE 4.  $\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z}_{18})$   $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_{18}).$ 

## **Theorem 2.7.** Suppose that M is a non-zero R-module. Then,

- (i) A submodule  $N = \operatorname{ann}(I)$  of M is a vertex of  $\mathbb{AE}^1_R(M)$  whenever  $I \subseteq \mathbb{Z}(M)$ .
- (ii) In the case of M is a MacCoy R-module, then for each finitely generated ideal I of R with I ⊆ Z(M), ann<sub>M</sub>(I) is a vertex in AE<sup>1</sup><sub>R</sub>(M). In particular, in a finitely generated R-module M such that R is a Noetherian ring, I ⊆ Z(M) implies that ann<sub>M</sub>(I) is a vertex in AE<sup>1</sup><sub>R</sub>(M).

*Proof.* (i) If  $I \not\subseteq Z(M)$ , then there exists a non-zero element  $a \in I \cap (R - Z(M))$ . Consequently, if  $\operatorname{ann}_M(a) = 0$ , it follows that  $\operatorname{ann}_M(I) = 0$ . Therefore,  $\operatorname{ann}_M(I)$  does not belong to the set of vertices of  $\mathbb{AE}^1_R(M)$ .

(ii) The first statement follows from definition. The second part is obtained by [13, Theorem 82], because when R is a Noetherian ring, then each finitely generated R-module M is a MacCoy module.  $\Box$ 

**Corollary 2.8.** If R is a ring with property (A), then for each finitely generated ideal  $I \subseteq Z(R)$ , ann<sub>R</sub>(I) is a vertex of  $\mathbb{AE}^{0}(R)$ .

**Corollary 2.9.** Let M be a super coprimal R-module. Then for every finitely generated ideal I of R with  $I \subseteq Z(M)$ ,  $\operatorname{ann}_M(I)$  is a vertex in  $\mathbb{AE}^0_R(M)$ .

*Proof.* The evidence is evident as each R-module that is super coprimal is also a McCoy R-module.  $\Box$ 

**Example 2.10.** Consider  $R = \mathbb{Z}_2 \times \mathbb{Z}_2$ . Then R is a MacCoy ring and also  $Z(R) = \{(0,0), (1,0), (0,1)\}$ . Note that all proper ideals of R are as follows:  $I_1 = \{(0,0)\}, I_2 = \{(0,0), (1,0)\}$  and  $I_3 = \{(0,0), (0,1)\}$ . Also,  $I_i \subseteq Z(R)$  and  $\operatorname{ann}_R(I_i) \neq 0$  for i = 1, 2, 3. Thus,

*R* is a McCoy ring. For  $I_2 = \langle (1,0) \rangle$  and  $I_3 = \langle (0,1) \rangle$ , we have  $\operatorname{ann}_R(I_2) = 0 \times \mathbb{Z}_2 = I_3 \neq 0_R$ and  $\operatorname{ann}_R(I_3) = \mathbb{Z}_2 \times 0 = I_2 \neq 0_R$ . Note that  $I_2 + I_3 = \langle (1,0), (0,1) \rangle = R$  and  $\operatorname{ann}(I_2 + I_3) = \operatorname{ann}(R) = 0$ . Thus,  $\operatorname{ann}(I_2 + I_3)$  is not a vertex of  $\mathbb{AE}^1(R)$ . Clearly,  $\operatorname{ann}(I_2) + \operatorname{ann}(I_3) = I_3 + I_2 = R$  is essential in *R*. Since  $I_2 \cap I_3 = \{(0,0)\} = 0_R$ , hence neither  $I_2$  nor  $I_3$  is not essential ideal in *R*, see Figure 5.



FIGURE 5.  $\mathbb{AE}^0(\mathbb{Z}_2 \times \mathbb{Z}_2)$   $\mathbb{AE}^1(\mathbb{Z}_2 \times \mathbb{Z}_2).$ 

**Proposition 2.11.** Suppose M is a non-zero semisimple R-module. Then, two different annihilating submodules N and K of M are connected in  $\mathbb{AE}_R^i(M)$  (i = 0, 1) whenever N+K = M. Moreover, since M is comultiplication, then  $\mathbb{AE}_R^i(M)$  (i = 0, 1) has no isolated vertex.

Proof. (i) The initial portion is evident, as a semisimple module does not have any proper essential submodule. For second part, since M is comultiplication, so  $V(\mathbb{AE}^0_R(M)) = \mathbb{S}(M)$  and  $V(\mathbb{AE}^1_R(M)) = \mathbb{S}^*(M)$ . Assume,  $N = \operatorname{ann}_M(I)$ , then there exists a submodule  $K = \operatorname{ann}_M(J)$ of M with  $N \oplus K = M$  where I and J are two separate ideals of R. By the first part, N is adjacent to K in  $\mathbb{AE}^i_R(M)$  (i = 0, 1). It implies that for every  $N \in V(\mathbb{AE}^i_R(M))$ ,  $\operatorname{deg}_i(N) \ge 1$ for i = 0, 1.  $\Box$ 

Recall that a ring where every two ideals are comparable is named a *chained ring*. For instance, localization of  $\mathbb{Z}$  at each prime ideal or furthermore generally every valuation domain is a chained ring.

**Proposition 2.12.** Let M be a comultiplication R-module,  $N \in Max(M)$ . Then for every  $m \in M \setminus N$  we have,

- (i) If M is not a cyclic R-module, then Rm N is an edge of  $\mathbb{AE}^1_R(M)$ .
- (ii) If R is a chained ring, then  $Rm \notin V(\mathbb{AE}^1_R(M))$ .

Proof. (i) Clearly,  $Rm = \operatorname{ann}_M(\operatorname{ann}_R(Rm))$  and  $N = \operatorname{ann}_M(\operatorname{ann}_R(N))$  are non-trivial submodules of M. Since Rm + N = M is essential in M, so the proof is complete. Moreover,  $\operatorname{deg}_1(N) \geq |\{m : m \in M \setminus N\}|.$  (ii) We emphasize that every comultiplication module M over a chained ring R is a compariable module. According to  $Rm \notin N$ , so  $N \subseteq Rm$  and so Rm = N + Rm = M is not a vertex of  $\mathbb{AE}^1_R(M)$ .  $\Box$ 

**Theorem 2.13.** Let M be a non-zero R-module and  $\operatorname{ann}_M(I) \leq^e M$  for some proper ideal I of R. Then,

- (i) diam $(\mathbb{AE}_R^i(M)) \leq 2$  for (i = 0, 1).
- (ii) Suppose M satisfies DAC. Whenever I and J are two separate comparable ideals in R, then ann<sub>M</sub>(I) and ann<sub>M</sub>(J) are adjacent in AE<sup>i</sup><sub>R</sub>(M) (i = 0, 1). Moreover, in the case that M is a uniserial module, then AE<sup>i</sup><sub>R</sub>(M) forms a complete graph for i = 0, 1.
- (iii) For every summand I in R such as J,  $\operatorname{ann}_M(J)$  is not a vertex of  $\mathbb{AE}^1_R(M)$ .

*Proof.* (i) Note that  $\operatorname{ann}_M(I)$  is a universal vertex in  $\mathbb{AE}^i_R(M)$  for i = 0, 1, because for every vertex  $\operatorname{ann}_M(J)$  of  $\mathbb{AE}^i_R(M)$  (i = 0, 1),  $\operatorname{ann}_M(I) + \operatorname{ann}_M(J)$  is an essential submodule of M. In fact, we have

$$\deg_i(\operatorname{ann}_M(I)) = |\operatorname{V}(\mathbb{A}\mathbb{E}_R^i(M))| - 1 \ (i = 0, 1).$$

Now if  $N = \operatorname{ann}_M(J)$  and  $K = \operatorname{ann}_M(T)$  are two distinct annihilating submodules of M, then  $N - \operatorname{ann}_M(I) - K$  is a path. Thus,  $\mathbb{AE}_R^i(M)$  is a connected graph and  $\operatorname{diam}(\mathbb{AE}_R^i(M)) \leq 2$  for (i = 0, 1).

(ii) Let  $J \subsetneq I$ , then  $\operatorname{ann}_M(I) \subsetneq \operatorname{ann}_M(J)$ . By assumption,  $\operatorname{ann}_M(J) \leq^e M$ . Clearly,  $\operatorname{ann}_M(J) \neq 0$ , so  $\operatorname{ann}_M(J) \in V(\mathbb{AE}^1_R(M))$ . Due to this  $\operatorname{ann}_M(I) + \operatorname{ann}_M(J) = \operatorname{ann}_M(J)$ , it is essential in M, so  $\operatorname{ann}_M(I) - \operatorname{ann}_M(J)$  is an edge in  $\mathbb{AE}^0_R(M)$ . Now if  $I \subsetneq J$  (especially, J = R) for some ideal J of R, then  $\operatorname{ann}_M(I) + \operatorname{ann}_M(J) = \operatorname{ann}_M(I)$  is again an essential submodule of M, as needed. The second part is clear, see Example 2.4 (iii).

(iii) Assume, R = I + J for some ideal J of R. Be careful that,  $\operatorname{ann}_M(I) \cap \operatorname{ann}_M(J) = \operatorname{ann}_M(I+J) = 0$ . By assumption,  $\operatorname{ann}_M(J) = 0$  since  $\operatorname{ann}_M(I) \leq^e M$ . So  $\operatorname{ann}_M(J)$  is not a vertex of  $\mathbb{AE}^1_R(M)$ .  $\Box$ 

**Corollary 2.14.** Let M be a strong comultiplication R-module under condition  $J(R) \neq 0$ . Then three parts of Theorem 2.13 are true.

Proof. Since  $J(R) \neq 0$ , so R has a non-zero superfluous submodule J. Set  $N = \operatorname{ann}_M(J)$ . Claim that N is a non-zero essential submodule of M only when J is a superfluous ideal of R. Clearly, since M is strong comultiplication and  $J \neq R$ , so N is a non-zero submodule in M. Propose that  $N \cap L = 0$  for some submodule L of M. Based on the assumption, there is an ideal X in R such that  $L = \operatorname{ann}_M(X)$  and so  $N \cap L = \operatorname{ann}_M(J) \cap \operatorname{ann}_M(X) = \operatorname{ann}_M(J + X) = 0$ . By hypothesis,  $J + X = \operatorname{ann}_R(\operatorname{ann}_M(J + X)) = R$ . Since J is superfluous, hence X = R and so L = 0, as needed. The converse is similar. Hence, N is essential in M and the conditions of Theorem 2.13 satisfy.  $\Box$ 

**Corollary 2.15.** If M is a non-zero uniform R-module, then  $\mathbb{AE}_R^i(M)$  (i = 0, 1) are complete graphs.

Note that Corollary 2.15 is not established for comultiplication modules, refer to Example 2.4 (ii).

**Corollary 2.16.** Let M be a non-zero R-module. If one of the following situations holds, then  $\mathbb{AE}^1_R(M)$  is a null graph and  $\mathbb{AE}^0_R(M)$  is the complete graph 0 - M.

- (i) R is a field.
- (ii) M is simple.
- (iii) M is a strong comultiplication R-module with J(R) = 0

**Theorem 2.17.** Consider M as a non-zero R-module with DAC. In addition, let there exists an ideal I of R with  $\operatorname{card}(I) \geq 2$  such that  $\operatorname{ann}_M(I) \leq^e M$  for some proper ideal I of R. Then  $\operatorname{gr}(\mathbb{AE}^i_R(M)) = 3.$ 

Proof. Assume that  $\{a, b\}$  is a subset of I. By assumption,  $\operatorname{ann}_M(a)$  and  $\operatorname{ann}_M(b)$  are distinct annihilating essential submodules in M. Let  $T \cap (\operatorname{ann}_M(a) + \operatorname{ann}_M(b)) = 0$  for some submodule T of M. Then  $T \cap \operatorname{ann}_M(I) = 0$ . By assumption, T = 0. It conclude that  $\operatorname{ann}_M(a) - \operatorname{ann}_M(b)$ is an edge. Hence,  $\operatorname{ann}_M(a) - \operatorname{ann}_M(b) - \operatorname{ann}_M(a)$ , is a triangle, as needed.  $\Box$ 

**Corollary 2.18.** Let M be a strong comultiplication R-module. In addition, if there are noncomparable ideals I and J in R such that I + J is superfluous in R, then  $gr(\mathbb{AE}_{R}^{i}(M)) = 3$ .

Proof. First let i = 0, then clearly  $0 - \operatorname{ann}_M(I) - M - 0$  is a triangle in  $\mathbb{AE}^0_R(M)$ , since  $\operatorname{ann}_M(I)$  is essential in M. In the case, i = 1, suppose that  $x \in I \setminus J$  and  $y \in J \setminus I$ . In virtue of Corollary 2.14,  $\operatorname{ann}_M(x)$ ,  $\operatorname{ann}_M(y)$  and  $\operatorname{ann}_M(I + J)$  are essential submodules of M. Then the proof results from Theorem 2.17 and Corollary 2.14, because  $\{x, y\} \subseteq I + J$ .  $\Box$ 

**Lemma 2.19.** If  $I \in \mathbb{I}(R)$ , then  $\operatorname{ann}_R(M/\operatorname{ann}_M(I)) = \operatorname{ann}_R(IM)$ .

Proof. Clearly, if I is a subset of  $\operatorname{ann}_R(M)$ , then IM = 0 and the proof is clear. Now assume that  $I \not\subseteq \operatorname{ann}_R(M)$  and  $r \in \operatorname{ann}_R(M/\operatorname{ann}_M(I))$ . Then,  $rM \subseteq \operatorname{ann}_M(I)$  and so rIM = 0. Hence,  $r \in \operatorname{ann}_R(IM)$ . The converse is similar.  $\Box$  **Theorem 2.20.** If  $\operatorname{ann}_M(I)$  is a prime submodule of M such that  $I^2 \not\subseteq \operatorname{ann}_R(M)$ , then  $\operatorname{ann}_M(I)$  is the collection of all elements m in M where  $rm \in \operatorname{ann}_R(IM)M$  for some  $r \in R \setminus \operatorname{ann}_R(IM)$ . Furthermore,  $\operatorname{ann}_M(I)$  is a minimal prime submodule of M.

Proof. By assumption,  $\operatorname{ann}_M(I)$  is a prime submodule of M, so  $\mathfrak{p} = (\operatorname{ann}_M(I) :_R M) = \operatorname{ann}_R(M/\operatorname{ann}_M(I))$  is a prime ideal of R. By Lemma 2.19,  $\operatorname{ann}_R(IM) = \mathfrak{p} \in \operatorname{Spec}(R)$ . Let  $H := \{m \in M : rm \in \mathfrak{p}M \text{ for some } r \notin \mathfrak{p}\}$  and  $m \in H$ . Then, there exists  $s \in R \setminus \mathfrak{p}$  such that  $sm \in \mathfrak{p}M = \operatorname{ann}_R(IM)M$ . This implies that  $sm = \sum_{i=1}^k s_i m_i$ , where  $s_i \in \mathfrak{p}$  and  $m_i \in M$  for  $1 \leq i \leq k$ . Thus,  $sIm = \sum_{i=1}^k s_i Im_i = 0$  and so  $sm \in \operatorname{ann}_M(I)$ . Since  $s \notin \mathfrak{p}$ , it follows that  $m \in \operatorname{ann}_M(I)$ . Therefore,  $H \subseteq \operatorname{ann}_M(I)$ . Conversely, let  $m \in \operatorname{ann}_M(I)$ . Then,  $Im = 0 \subseteq \mathfrak{p}M$ . If  $I \not\subseteq \mathfrak{p}$ , then there exists an element r in  $I \setminus \mathfrak{p}$  so that  $0 = rm \in \mathfrak{p}M$  and so  $m \in H$ . Now, if  $I \subseteq \mathfrak{p} = \operatorname{ann}_R(IM)$ , then  $I^2M = 0$  and so  $I^2 \subseteq \operatorname{ann}_R(M)$ , a contradiction. Assume that  $P \in \operatorname{Spec}(M)$  and  $P \subseteq \operatorname{ann}_M(I)$ . Let  $m \in \operatorname{ann}_M(I)$ . Then,  $Im = 0 \subseteq P$  which implies that  $I \subseteq \operatorname{ann}_R(M/P)$  or  $m \in P$ . If  $IM \subseteq P \subseteq \operatorname{ann}_M(I)$ , then  $I^2 \subseteq \operatorname{ann}_R(M)$ , a contradiction. It implies that,  $m \in P$  and so  $P = \operatorname{ann}_M(I)$ .  $\Box$ 

# Theorem 2.21. Let M be an R-module. Then,

- (i) Assume that for some proper non-nilpotent ideal I of R, ann<sub>M</sub>(I) is essential in M.
  When R is an Artinian ring or M is a Noetherian module, then AE<sup>i</sup><sub>R</sub>(M) (i = 0, 1) contains a complete subgraph.
- (ii) If IJ = 0 for some ideal J in  $\mathbb{I}^*(R)$ , then  $\operatorname{ann}_M(I) \operatorname{ann}_M(J)$  is an edge of  $\mathbb{AE}^i_R(M)$ .
- (iii) If I is a finitely generated ideal of R and I is a subset of  $rad(ann_R(M))$ , then  $\mathbb{AE}_R^i(M)$ (i = 0, 1) has a universal vertex.
- (iv) Let  $a, b \in R$ . If  $ab \notin \operatorname{rad}(\operatorname{ann}_R(M))$  and  $\operatorname{ann}_M(ab)$  is a prime submodule of M, then  $\operatorname{ann}_M(a)$  is not connected to  $\operatorname{ann}_M(b)$  in  $\mathbb{AE}^i_R(M)$ .

Proof. (i) Consider the descending chain  $I \supseteq I^2 \supseteq I^3 \supseteq \cdots$  from the ideals of R such that  $I \in \mathbb{I}^*(R)$ . According to assumption, there exists the smallest natural number  $t \in \mathbb{N}$  such that  $I^t = I^{t+k}$  for  $k \ge 1$ . Then  $0 \subsetneq \operatorname{ann}_M(I) \subseteq \operatorname{ann}_M(I^2) \subseteq \cdots \subseteq \operatorname{ann}_M(I^t)$  is an ascending chain of submodules of M. By assumption, for every  $1 \le s \le t$ ,  $\operatorname{ann}_M(I^s)$  is an essential submodule of M. Thus for every  $1 \le i \ne j \le t$ ,  $\operatorname{ann}_M(I^i) - \operatorname{ann}_M(I^j)$  is an edge of  $\mathbb{AE}^i_R(M)$  and so  $\mathbb{AE}^i_R(M)$  contains the complete subgraph  $K_t$ . For a Noetherian R-module M the proof is similar.

(ii) For each  $I \in \mathbb{I}^*(R)$ ,  $IM + \operatorname{ann}_M(I)$  is essential in M. Let N be a submodule of M and  $I \in \mathbb{I}^*(R)$ . Then,  $IN \subseteq IM \cap N \subseteq (IM + \operatorname{ann}_M(I)) \cap N$ . If  $(IM + \operatorname{ann}_M(I)) \cap N = 0$ , then IN = 0 which implies that  $N \subseteq \operatorname{ann}_M(I)$ . Hence,  $N \subseteq (IM + \operatorname{ann}_M(I)) \cap N$  and so N = 0. Therefore,  $IM + \operatorname{ann}_M(I)$  is essential in M. Let IJ = 0 for some ideal J of R so IJM = 0,

thus  $IM \subseteq \operatorname{ann}_M(J)$  and so  $IM + \operatorname{ann}_M(I) \subseteq \operatorname{ann}_M(J) + \operatorname{ann}_M(I)$ . This implies that  $\operatorname{ann}_M(I)$  is adjacent to  $\operatorname{ann}_M(J)$  in  $\mathbb{AE}^i_B(M)$  (i = 0, 1), as needed.

(iii) By assumption, there exists the smallest number  $t \in \mathbb{N}$ , such that  $I^t M = 0$ , since Iis finitely generated. Thus,  $IM \subseteq \operatorname{ann}_M(I^{t-1})$  and so  $IM + \operatorname{ann}_M(I) \subseteq \operatorname{ann}_M(I^{t-1})$ . So,  $\operatorname{ann}_M(I^{t-1})$  is an essential submodule of M by (ii). This implies that  $\operatorname{ann}_M(I^{t-1}) + \operatorname{ann}_M(J)$ is essential in M for every  $\operatorname{ann}_M(J) \in V(\mathbb{AE}^i_R(M))$  (i = 0, 1), i.e.,  $\operatorname{ann}_M(I^{t-1})$  is a universal vertex of  $\mathbb{AE}^i_R(M)$ , and the proof is complete.

(iv) Note that

$$\operatorname{ann}_M(a) + \operatorname{ann}_M(b) \subseteq \operatorname{ann}_M(Ra \cap Rb) \subseteq \operatorname{ann}_M(RaRb) = \operatorname{ann}_M(ab).$$

By virtue of [6, Theorem 5 (iii)],  $\operatorname{ann}_M(ab)$  is not an essential submodule of M and so  $\operatorname{ann}_M(a)$ + $\operatorname{ann}_M(b)$  is not an essential submodule of M, as we stated.  $\Box$ 

**Corollary 2.22.** Let M be a non-zero module on a ring R with DAC and  $N, K \in V(\mathbb{AE}^0_R(M))$ . Then,

- (i) If  $rad(ann_R(M))$  is not zero, then  $\mathbb{AE}^0_R(M)$  contains a complete subgraph.
- (ii) If M is comultiplication with condition  $|Min(M)| \ge 3$  and  $Min(M) \cap ess(M) \ne \emptyset$ , then  $gr(\mathbb{AE}^1(M)) = 3$ .

Proof. (i) Assume that  $a \in \operatorname{rad}(\operatorname{ann}_R(M))$ , thus there exists a smallest natural number t, such that  $a^t M = 0$ , so  $0 \neq a^i M \subseteq \operatorname{ann}_M(a^{t-i})$  for  $1 \leq i \leq t-1$  and so  $\operatorname{ann}_M(a^{t-i}) \in V(\mathbb{AE}^0(M))$  for  $1 \leq i \leq t-1$ . By Theorem 2.21 (ii),  $\operatorname{ann}_M(a)$  is an essential submodule of M. Now since  $\operatorname{ann}_M(a) \subseteq \operatorname{ann}_M(a^i)$  for  $2 \leq i \leq t-1$  so the annihilating submodules  $\operatorname{ann}_M(a^i)$  ( $2 \leq i \leq t-1$ ) are essential submodules of M. Thus, for every  $1 \leq i \neq j \leq t-1$ ,  $\operatorname{ann}_M(a^i) + \operatorname{ann}_M(a^j)$  is an essential submodule of M and so  $\operatorname{ann}_M(a^i) - \operatorname{ann}_M(a^j)$  is an edge of  $\mathbb{AE}^0(M)$ . Therefore  $\mathbb{AE}^0(M)$  contains the complete subgraph  $K_{t-1}$ .

(ii) Let  $\{K_1, K_2, K_3\} \subseteq \operatorname{Min}(M)$ . By [1, Theorem 3.2],  $K_i \in \operatorname{Min}(M)$  if and only if there exists  $\mathfrak{m}_i \in \operatorname{Max}(R)$  such that  $K_i = (0:_M \mathfrak{m}_i) \neq 0$  for all  $1 \leq i \leq 3$ . Therefore  $\operatorname{Min}(M) \subseteq \operatorname{V}(\mathbb{AE}^1(M))$ and since  $\mathfrak{m}_i \cap \mathfrak{m}_j = 0$  for  $1 \leq i \neq j \leq 3$  hence  $K_i + K_j = \operatorname{ann}_M(\mathfrak{m}_i) + \operatorname{ann}_M(\mathfrak{m}_j) = \operatorname{ann}_M(\mathfrak{m}_i \cap \mathfrak{m}_j) = M$  is essential in M. Therefore  $K_1 - K_2 - K_3 - K_1$  is a 3-cyclic in  $\mathbb{AE}^1(M)$ , as needed. Note that, if I is a non-zero ideal of R, then there is a maximal ideal  $\mathfrak{m}$  such that I is contained in  $\mathfrak{m}$ . Thus,  $0 \neq \operatorname{ann}_M(\mathfrak{m}) \subseteq \operatorname{ann}_M(I)$  and so  $\operatorname{ann}_M(I)$  is a vertex of graph  $\mathbb{AE}^1(M)$ .  $\square$ 

#### 3. Conclusions

In this paper, the basic properties of sum-annihilating essential submodule graph are examined, and related results presented. Additionally, the interaction between the graph-theoretic properties and the corresponding algebraic structures are investigated. In Definition 2.2 we represented the sum-annihilating essential submodule graph of  $\mathbb{AE}^{0}_{\mathbb{R}}(M)$  (resp., its subgraph  $\mathbb{AE}^{1}_{\mathbb{R}}(M)$ ) with the vertex set of all (resp., non-zero proper) annihilating submodules of M and two separate vertices N and K are adjacent in  $\mathbb{AE}^{i}_{\mathbb{R}}(M)$  (i = 0, 1), whenever N + K is an essential submodule of M.

In Examples 2.4, 2.5, 2.10, we presented some examples of such graphs. In Proposition 2.6, we expressed that for the uniserial module  $M = \mathbb{Z}_{2^n}$  as a  $\mathbb{Z}$ -module the clique numbers of  $\mathbb{AE}^0_{\mathbb{Z}}(M)$  and  $\mathbb{AE}^1_{\mathbb{Z}}(M)$  are n+1 and n-1, respectively. In Theorem 2.7, we have provided conditions under which for an ideal I of R,  $\operatorname{ann}_M(I)$  is a vertex of graph  $\mathbb{AE}^1_R(M)$ . In Corollaries 2.8, 2.9, we concluded that whenever either R is a ring with property (A) or M is a super coprimal R-module, then for each finitely generated ideal I of R such that I is a subset of Z(R),  $\operatorname{ann}_M(I)$  is a vertex in  $\mathbb{AE}^0_R(M)$ . In Proposition 2.11, we demonstrated that if M is a non-zero semisimple module over R, then two distinct annihilating submodules Nand K of M are connected in  $\mathbb{AE}^{i}_{R}(M)$  (i = 0, 1) whenever N + K = M. Moreover, if M is comultiplication, then  $\mathbb{AE}_{R}^{i}(M)$  (i = 0, 1) has no isolated vertex. In Proposition 2.12, we expressed that if M is a comultiplication module over R and N as its maximal submodule, then for every  $m \in M \setminus N$  whenever M is not cyclic, Rm - N is an edge of  $\mathbb{AE}^1_R(M)$ . Also, if R is a chained ring, then  $Rm \notin V(\mathbb{AE}^1_R(M))$ . Among various results, in theorem 2.13, it was demonstrated that when M is a non-zero R-module with  $\operatorname{ann}_M(I)$  essential in M for a certain proper ideal I in R, then diam $(\mathbb{AE}_R^i(M)) \leq 2$  (i = 0, 1). Three results of theorem 2.13 are Corollaries 2.14, 2.15 and 2.16 so that the last result states the conditions under which  $\mathbb{AE}^{1}_{B}(M)$  is a null graph and  $\mathbb{AE}^{0}_{B}(M)$  is the complete graph 0-M. In Theorem 2.17 and Corollary 2.18 we gave some conditions on the ring R, R-module M and ideals of R such that  $\operatorname{gr}(\mathbb{AE}^{i}_{R}(M)) = 3$  (i = 0, 1). In Theorem 2.20, we concluded that when  $\operatorname{ann}_{M}(I)$  is a prime submodule of M in such a way that  $I^2$  is not included in  $\operatorname{ann}_R(M)$ , then  $\operatorname{ann}_M(I)$  is the set of all elements m in M where  $rm \in \operatorname{ann}_R(IM)M$  for some  $r \in R \setminus \operatorname{ann}_R(IM)$ . Additionally, in this scenario,  $\operatorname{ann}_M(I)$  is a minimal prime submodule of M.

Finally, in Theorem 2.21 among various results, we proved that if for some proper nonnilpotent ideal I of R,  $\operatorname{ann}_M(I)$  is an essential submodule of M, whenever either R is an Artinian ring or M is a Noetherian module, then  $\mathbb{AE}_R^i(M)$  (i = 0, 1) contains a complete subgraph. As a result of this theorem in Corollary 2.22 we concluded that if M is a non-zero module on a ring R with DAC and N, K are vertices of  $\mathbb{AE}_R^0(M)$  with  $\operatorname{rad}(\operatorname{ann}_R(M)) \neq 0$ , then  $\mathbb{AE}^0_R(M)$  contains a complete subgraph. Also, in this case, if M is comultiplication with  $|\operatorname{Min}(M)| \geq 3$  and  $\operatorname{Min}(M) \cap ess(M) \neq \emptyset$ , then  $\operatorname{gr}(\mathbb{AE}^1(M)) = 3$ .

## Acknowledgments

The author is deeply grateful to the referee for careful reading of the manuscript and helpful comments and for her/his valuable suggestions which led to some improvements in the quality of this paper.

### References

- [1] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., (2008) 1-10.
- [2] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8 No. 1 (2009) 105-113.
- [3] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim., 1 No. 2 (2016) 117-135.
- [4] J. Amjadi, The essential ideal graph of a commutative ring, Asian-Eur. J. Math., 11 No. 4 (2018) 1850058.
- [5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [6] S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules and the annihilator essential graph, Acta Math. Vietnam., 44 (2019) 905-914.
- [7] A. Barnard, Multiplication modules, J. Algebra, 71 No. 1 (1981) 174-178.
- [8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10 No. 4 (2011) 727-739.
- [9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 No. 4 (1988) 755-779.
- [10] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra, 19 No. 7 (1991) 1867-1892.
- [11] G. Hinkle and J. Huckaba, The generalized Kronecker function and the ring R(X), J. reine angew. Math., 292 (1977) 25-36.
- [12] C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with property (A) and their extensions, J. Algebra, 315 No. 2 (2007) 612-628.
- [13] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago and London, 1974.
- [14] T. Y. Lam, Lectures on Modules and Rings, Springer, 1999.
- [15] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli., 33 No. 1 (1984) 61-69.
- [16] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 No. 6 (1992) 1803-1817.
- [17] S. Rajaee, The annihilators comaximal graph, Asian-Eur. J. Math., 15 No. 8 (2022) 2250153.
- [18] S. Rajaee and A. Abbasi, Some results on the comaximal colon ideal graph, J. Math. Ext., 16 No. 11 (2022) (8)1-19.
- [19] E. Snapper, Completely Primary Rings. IV, Ann. of Math., 55 (1952) 46-64.
- [20] A. Tuganbaev, Rings Close to Regular, Kluwer Academic, 2002.
- [21] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Springer Singapore, 2016.

# Saeed Rajaee

Department of Mathematics, Faculty of Science, University of Payame Noor (PNU), P.O. Box 19395-3697, Tehran, Iran. saeed\_rajaee@pnu.ac.ir