

Algebraic Structures **Their Applications**

Algebraic Structures and Their Applications Vol. 11 No. 4 (2024) pp 321-335.

Research Paper

SOME RESULTS ON THE SUM-ANNIHILATING ESSENTIAL SUBMODULE GRAPH

SAEED RAJAEE*[∗]*

ABSTRACT. Consider a commutative ring R with a non-zero identity $1 \neq 0$, and let M be a non-zero unitary module over *R*. In this document, our goal is to present the sum-annihilating essential submodule graph $\mathbb{A}\mathbb{E}^0_R(M)$ and its subgraph $\mathbb{A}\mathbb{E}^1_R(M)$ of a module M over a commutative ring R which is described in the following way: The vertex set of graph $\mathbb{A}\mathbb{E}_R^0(M)$ (resp., $\mathbb{A}\mathbb{E}^1_R(M)$) is the collection of all (resp., non-zero proper) annihilating submodules of M and two separate annihilating submodules N and K are connected anytime $N + K$ is essential in *M*. We study and investigate the basic properties of graphs $\mathbb{AE}^i_R(M)$ (*i* = 0, 1) and will present some related results. Additionally, we explore how the properties of graphs interact with the algebraic structures they represent.

DOI: 10.22034/as.2024.21047.1697

MSC(2010): Primary: 13C13, 13C99, 05C75, 16D80.

Keywords: Annihilating submodule, Essential submodule, Graphs of submodules.

Received: 29 December 2023, Accepted: 02 June 2024.

*[∗]*Corresponding author

^{© 2024} Yazd University.

1. INTRODUCTION

In the present paper, *M* is a non-zero unital module over a commutative ring *R* with nonzero identity element. In the case of a ring *R*, the collection of whole ideals in *R* is represented by $\mathbb{I}(R)$ and also $\mathbb{I}^*(R) = \mathbb{I}(R) \setminus \{0, R\}$ is the collection of entire non-zero proper (non-trivial) ideals in *R*. In addition, the collection of whole submodules of *M* is represented by the symbol $\mathbb{S}(M)$ and $\mathbb{S}^*(M) = \mathbb{S}(M) \setminus \{0, M\}$ is the collection of entire non-zero proper submodules of *M*. In addition, J(*R*) will represente the Jacobson radical of *R*, and it is the intersection of collection of maximal ideals in *R* and also it is the sum of all superfluous ideals in *R*. If *R* does not have superfluous ideals, then we put $J(R) = 0$. If N is a submodule of M, then the residual of *N* by *M* will represent by $(N : R M)$. This refers to the collection of elements *r* in R such that when multiplied by *M*, the result is contained within *N* i.e., $rM \subseteq N$. For any subset *Y* of R , $\text{ann}_M(Y)$ represents as the collection of elements m in M where m multiplied by a equals 0 for every $a \in Y$. In particular, for an element *x* in *R*, $a n n_M(x) = \{m \in M : xm = 0\}$ is named an *annihilator submodule* of *M*. Also, $\text{ann}_R(M) = (0 :_R M)$ represents the annihilator of *M*. An element *x* in *R* is named a *zero-divisor* on *M* whenever there exists a non-zero element *m* in *M* such that $xm = 0$, i.e., $\text{ann}_M(x) \neq 0$. By $\text{Z}_R(M)$ (briefly, $\text{Z}(M)$), we express the collection of entire zero-divisors of *R* on *M*, i.e., $Z(M) = \{r \in R : \text{ann}_M(r) \neq 0\}$. When *R* is considered as an *R*-module, then we use $Z(R)$ as a substitute for $Z_R(R)$. A non-empty subset *S* of *R* is named multiplicatively closed subset (briefly, m.c.s.) exactly when $0 \in S$, 1 \notin *S* and *xy* \in *S* for all *x,y* \in *S*. For instance, *S* = *R* − Z(*M*) is a m.c.s. of *R*. For further information, we direct the reader to [\[5,](#page-13-0) [13](#page-13-1), [14,](#page-13-2) [21](#page-13-3)].

A ring *R* has property (A), whenever each finitely generated ideal *I* contained in Z(*R*) has a non-zero annihilator, i.e., $\text{ann}_R(I) \neq 0$, see [[11,](#page-13-4) [12\]](#page-13-5). In [[10\]](#page-13-6), the author investigated rings with property (A) and he named them McCoy. A Noetherian ring is an instance of a McCoy ring. A McCoy module is an *R*-module *M* such that for each finitely generated ideal *I* of *R* where *I* is contained in $Z(M)$, $\text{ann}_M(I) \neq 0$. An *R*-module *M* is named *super coprimal* when for each finite subset *X* in $Z(M)$, $ann_M(X) \neq 0$.

A *prime submodule P* of *M* is a proper submodule such that for $r \in R$ and $m \in M$, in the event that $rm \in P$ gives the result that either $r \in (P : R M)$ or $m \in P$. The collection of all prime submodules of M is denoted by $Spec(M)$. If P is a prime submodule, then $\mathfrak{p} := (P : R \mid M)$ is a prime ideal of R and P is named the p-prime submodule of M, see [[16](#page-13-7)]. Equivalently, for the ideal *I* of *R* and *m* in *M*, whenever $Im \subseteq P$, then either $I \subseteq \text{ann}_R(M/P)$ or $m \in P$. Note that when *Q* is a maximal submodule of *M*, then $Q \in \text{Spec}(M)$ and also $\mathfrak{m} = (Q : M) \in \text{Max}(R)$ such that $\text{Max}(R)$ is the set of all maximal ideals of R. In this case, we state that *Q* is an m-*maximal submodule* of *M*, see [[15,](#page-13-8) p. 61]. The set of all minimal (resp., maximal) submodules of *M* is denoted by Min(*M*) (resp., Max(*M*)). An *R*-module *M*

is named *prime* whenever for each non-zero submodule *X* of *M*, $ann(X) = ann(M)$. Also, *M* is a *multiplication module* whenever for each submodule *N* of *M* there exists an ideal *I* of *R* where $N = IM$. In addition, in this case, $N = (N :_R M)M$, refer to [\[7,](#page-13-9) [9\]](#page-13-10).

Dually, *M* is referred to as a *comultiplication module* whenever for each submodule *N* of *M*, there exists an ideal *I* of *R* such that *N* is equal to the set of elements in *M* that are annihilated by *I*, i.e., $N = (0 :_M I)$, see [[1](#page-13-11)]. For instance, $M = \mathbb{Z}_{2^\infty}$ as a Z-module is comultiplication because every proper submodule of *M* is as $(0 :_M 2^k \mathbb{Z})$ for $k = 0, 1, \ldots$. Obviously, *M* is comultiplication exactly when for every submodule *N* of *M*, we have the relation $\text{ann}_M(\text{ann}_R(N)) = N$. The ideal *I* of *R* where $N = (0 : M I)$ is unique when M is comultiplication and in addition, it has the double annihilator condition (briefly, DAC) that is, $\text{ann}_R(\text{ann}_M(I)) = I$ for each ideal *I* of *R*. Such modules are named *strong comultiplication modules*. For a positive integer *n* and a prime number *p* the Z-modules $\mathbb{Z}_{p^{\infty}}$ and \mathbb{Z}_{n} are comultiplication whereas they are not strong comultiplication, refer to [[2](#page-13-12)]. By [[19,](#page-13-13) Theorem 1.1], when *R* is *completely primary*, then every ideal of *R* is the annihilator of some subset of *R* exactly when *R* has a unique minimal ideal. In simple terms, a ring *R* is considered a *fully elemental annihilator ring* if, for every ideal *I* of *R*, there exists an element *x* in *R* such that *I* is equal to the set of all elements that annihilate *x* in *R*, i.e., $I = \text{ann}_R(x)$. This is true exactly when *R* is a direct sum of completely primary principal ideal rings.

A lot of research have been done to associate graphs with algebraic structures such as rings or modules, the reader refers to [\[3,](#page-13-14) [4,](#page-13-15) [6](#page-13-16), [8](#page-13-17), [17,](#page-13-18) [18\]](#page-13-19). An ideal *A* of *R* is named an *annihilating ideal*, whenever $\text{ann}_R(A) \neq 0$. It follows that there exists a non-zero ideal *B* of *R* such that $AB = 0$. The collection of all ideals with non-zero annihilators is denoted by $\mathbb{A}(R)$.

Recently in [\[17](#page-13-18)], the author introduced the annihilators comaximal graph of *G∗* (*M*). In addition, in [\[18](#page-13-19)], the authors studied the comaximal colon ideal graph of *C ∗* (*M*).

Motivated by [[3](#page-13-14), [4,](#page-13-15) [6,](#page-13-16) [8,](#page-13-17) [17,](#page-13-18) [18](#page-13-19)], we introduce the sum-annihilating essential submodule graph $\mathbb{A}\mathbb{E}^0_R(M)$ and its subgraph $\mathbb{A}\mathbb{E}^1_R(M)$ as follows: The vertex set of graph $\mathbb{A}\mathbb{E}^0_R(M)$ (resp., $\mathbb{A}\mathbb{E}^1_R(M)$) is the collection of all (resp., non-zero proper) annihilating submodules of *M*. Two separate vertices $N = \text{ann}_M(I)$ and $K = \text{ann}_M(J)$ are connected whenever $N + K$ is essential in *M*. In particular, if we consider $M = R$ as an *R*-module, then the annihilating submodules of *M* are the same as the annihilating ideals of *R*. Additionally, two vertices $I = \text{ann}_R(A)$ and $J = \text{ann}_R(B)$ such that $A, B \in \mathbb{I}(R)$ are adjacent in $\mathbb{AE}_R^0(R)$ whenever $I + J$ is essential in *R*. In the case of, $M = R$, $\mathbb{A} \mathbb{E}^1_R(R)$ is the subgraph of \mathcal{E}_R generated by the collection of all non-trivial annihilating ideals of *R*. In particular, if $M = R$ is a comultiplication *R*-module, then $\mathbb{AE}^1_R(R)$ and \mathcal{E}_R are the same. This article aims to explore certain characteristics of $\mathbb{AE}^i_R(M)$ for $i=0,1$.

The *diameter* of a graph G , represented as $diam(G)$, is the maximum distance between each two vertices in *G*. The *girth* of a graph *G*, represented as $gr(G)$, is the length of the shortest cycle in *G* when it contains a cycle, otherwise the girth of *G* is considered infinite. In a graph, a *clique* is the largest fully connected subgraph, and the number of vertices in the largest clique of graph *G*, represented as $\omega(G)$, is referred to as the clique number of *G*.

2. **The sum-annihilating essential submodule graph**

In this section, we present the sum-annihilating essential graph $\mathbb{AE}_R^0(M)$ and its subgraph $\mathbb{A}\mathbb{E}^1_R(M)$ which are simple undirected graphs, with vertices set

$$
\mathcal{V}(\mathbb{A} \mathbb{E}_R^0(M)) = \{ N \in \mathbb{S}(M) \mid N = \operatorname{ann}_M(I), \text{for some } I \in \mathbb{I}(R) \},
$$

and

$$
\mathcal{V}(\mathbb{A} \mathbb{E}^1_R(M)) = \{ N \in \mathbb{S}^*(M) \mid N = \mathrm{ann}_M(I), \text{for some } I \in \mathbb{I}^*(R) \}.
$$

Two separate vertices *N* and *K* in $\mathbb{AE}^i_R(M)$ (*i* = 0,1) are connected only when $N + K$ is essential in *M*.

We start by introducing the following definition.

Definition 2.1. Let us have a non-zero module *M* over a ring *R*. A submodule *N* of *M* is considered an *annihilating submodule* of *M* if there is a (non-zero proper) ideal *I* of R such that *N* equals the annihilator of *M* with respect to *I*, i.e., $N = \text{ann}_M(I) = (0 :_M I)$.

Clearly, $\text{ann}_M(0) = M$, $\text{ann}_M(R) = 0_M$ are trivial annihilating submodules of M. Particularly, if *R* is a principal ideal domain, then for each $a \in \mathbb{Z}(M)$, $\text{ann}_M(a) = \text{ann}_M(Ra) \neq 0$, is an annihilating submodule of *M*.

Definition 2.2. Consider *M* as an *R*-module.

- (i) The *sum-annihilating essential submodule graph* of M, represented as $\mathbb{A}\mathbb{E}_R^0(M)$ is an undirected graph with the vertex collection of entire annihilating submodules of *M* and two different vertices $N = \text{ann}_M(I)$ and $K = \text{ann}_M(J)$ are connected in $\mathbb{A}\mathbb{E}_R^0(M)$, whenever $N + K$ is an essential submodule of M.
- (ii) The *strong sum-annihilating essential submodule graph* of M , denoted by $\mathbb{A}\mathbb{E}_R^1(M)$ is a simple undirected graph with the vertex set of all non-trivial annihilating submodules of *M* and two distinct vertices *N* and *K* are adjacent in $\mathbb{AE}^1_R(M)$, whenever $N + K$ is an essential submodule of *M*.

Clearly, $\mathbb{A}\mathbb{E}^0_R(M)$ is a star graph that has universal vertex $M = \text{ann}_M(0)$, because for each annihilating submodule *N* of *M*, the sum of *N* and *M* equals *M* is essential in *M*. Moreover, $\mathbb{A}\mathbb{E}_R^0(M)$ is not an empty graph, since $0-M$ is an edge. Also, $\mathbb{A}\mathbb{E}_R^1(M)$ is a subgraph of $\mathbb{A}\mathbb{E}_R^0(M)$ where does not take zero submodule and M to be vertices of $\mathbb{A}\mathbb{E}_R^1(M)$. If there is

no confusion regarding the ring we will write $\mathbb{AE}^i(M)$ instead of $\mathbb{AE}^i_R(M)$ for $i = 0, 1$. In particular, when we view *R* as an *R*-module, we use $\mathbb{AE}^i(R)$ instead of $\mathbb{AE}^i_R(R)$ for $i = 0, 1$. We present the degrees of vertex N in $\mathbb{AE}^0(M)$ and $\mathbb{AE}^1(M)$, respectively by $\text{deg}_0(N)$ and $deg_1(N)$.

Note 2.3. *Let M be a non-zero R-module.*

- (i) For each $a \in R$, $\text{ann}_M(a) = \text{ann}_M(Ra) \neq 0$ is a vertex in $\mathbb{A} \mathbb{E}^1_R(M)$ if and only if $a \in \mathbb{Z}(M) \setminus \{0\}.$
- (ii) *In general,* Z(*M*) *may not be an ideal of R for an R-module M. For instance, consider* $M = \mathbb{Z}_2 \times \mathbb{Z}_3$ *as a* \mathbb{Z} *-module. Then one can check that* $\mathbb{Z}(M) = 2\mathbb{Z} \cup 3\mathbb{Z}$ *. Of course, in this case, since* Z *is a PID, M is McCoy thus, for each finitely generated ideal* $I \subseteq \mathcal{Z}(M)$, $\text{ann}_M(I) \neq 0$ *is a vertex of* $\mathbb{A}\mathbb{E}_R^0(M)$ *.*

Example 2.4. (i) For a simple R-module M, $\mathbb{A}\mathbb{E}_R^0(M)$ is of the form $0 - M$, and $\mathbb{A}\mathbb{E}_R^1(M)$ is the null graph.

(ii) Let us propose $M = \mathbb{Z}$ as an \mathbb{Z} -module. Then $(0 :_{\mathbb{Z}} k\mathbb{Z}) = 0$ for each ideal $k\mathbb{Z}$ in \mathbb{Z} with $0 \neq k \in \mathbb{N}$ and for $k = 0$, $(0 : \mathbb{Z}^n) = \mathbb{Z}$. Therefore, \mathbb{Z}^n has no non-trivial annihilating submodule as a Z-module. Thus, $\mathbb{AE}_{\mathbb{Z}}^0(\mathbb{Z})$ has only two vertices 0 and Z and only an edge $0 - \mathbb{Z}$. Also, $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z})$ is a null graph.

(iii) Consider $M = \mathbb{Z}_6$ as an Z-module. Then $\langle \overline{2} \rangle = \text{ann}_{\mathbb{Z}_6}(3\mathbb{Z})$, and $\langle \overline{3} \rangle = \text{ann}_{\mathbb{Z}_6}(2\mathbb{Z})$ are nontrivial annihilating submodules of \mathbb{Z}_6 . Clearly, $\langle \overline{2} \rangle + \langle \overline{3} \rangle = \mathbb{Z}_6$ which is an essential submodule of \mathbb{Z}_6 . Therefore, $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_6)$ is the graph with only an edge $\langle 2 \rangle - \langle 3 \rangle$, see Figure 1.

FIGURE 1. $\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z}_6)$ $\mathbb{AE}^1_{\mathbb{Z}}(\mathbb{Z}_6)$.

In general, take $M = \mathbb{Z}_{p_1 \cdots p_s}$ as a \mathbb{Z} -module such that all p_i 's $(1 \le i \le s)$ are distinct prime numbers, then $\langle \bar{p}_i \rangle = \text{ann}_M(p_1 \cdots p_{i-1} p_{i+1} \cdots p_s \mathbb{Z})$ is a non-trivial annihilating submodule of M for every $1 \leq i \leq s$ and $\langle \bar{p}_i \rangle + \langle \bar{p}_j \rangle = M$ for each $1 \leq i \neq j \leq s$. Hence, the subgraph of $\mathbb{AE}_{\mathbb{Z}}^1(M)$ generated by $\{\langle \bar{p}_1 \rangle, \cdots, \langle \bar{p}_s \rangle\}$ is the maximal complete subgraph of $\mathbb{AE}_{\mathbb{Z}}^1(M)$. In fact, $\mathbb{AE}_{\mathbb{Z}}^1(M)$ has the maximal complete subgraph isomorphic to K_s . So, $\omega(\mathbb{AE}_{\mathbb{Z}}^0(M)) = s + 1$ and $\omega(\mathbb{A}\mathbb{E}_{\mathbb{Z}}^1(M)) = s$, because the subgraph of $\mathbb{A}\mathbb{E}_{\mathbb{Z}}^0(M)$ generated by $\{\langle \bar{p_1} \rangle, \cdots, \langle \bar{p_s} \rangle, M\}$ is the maximal complete subgraph. For example, we have $\omega(\mathbb{A}\mathbb{E}^1_{{\mathbb{Z}}}({\mathbb{Z}}_6)) = 2$ and $\omega(\mathbb{A}\mathbb{E}^0_{{\mathbb{Z}}}({\mathbb{Z}}_6)) = 3$.

(iv) Consider the uniserial Z-module $M = \mathbb{Z}_{16}$. Then $\langle \overline{2} \rangle = \operatorname{ann}_{\mathbb{Z}_{16}}(8\mathbb{Z}), \ \langle \overline{4} \rangle = \operatorname{ann}_{\mathbb{Z}_{16}}(4\mathbb{Z}),$ and $\langle \bar{8} \rangle = \text{ann}_{\mathbb{Z}_{16}}(2\mathbb{Z})$ are all non-trivial annihilating submodules of *M*. One can check that the graphs $\mathbb{AE}_{\mathbb{Z}}^0(\mathbb{Z}_{16})$ and $\mathbb{AE}_{\mathbb{Z}}^1(\mathbb{Z}_{16})$ are as in Figure 2.

Example 2.5. (i) Take $M = \mathbb{Z}_{12}$ as a Z-module. Then $\langle \overline{2} \rangle = \text{ann}_M(6\mathbb{Z}), \langle \overline{3} \rangle = \text{ann}_M(4\mathbb{Z}),$ $\langle \overline{4} \rangle = \text{ann}_M(3\mathbb{Z})$ and $\langle \overline{6} \rangle = \text{ann}_M(2\mathbb{Z})$. One can check that the graphs $\mathbb{AE}_{\mathbb{Z}}^i(\mathbb{Z}_{12})$ $(i = 0, 1)$ are as Figure [3.](#page-5-0)

(ii) Take $M = \mathbb{Z}_{18}$ as a \mathbb{Z} -module. Then $\langle \bar{2} \rangle = \mathrm{ann}_M(\mathfrak{A}), \langle \bar{3} \rangle = \mathrm{ann}_M(\mathfrak{b}\mathbb{Z}), \langle \bar{6} \rangle = \mathrm{ann}_M(\mathfrak{A}\mathbb{Z})$ and $\langle \overline{9} \rangle = \text{ann}_M(2\mathbb{Z})$. Clearly, $\langle \overline{3} \rangle$ is the only proper essential submodule of *M*. Also, one can check that the graphs $\mathbb{AE}_{\mathbb{Z}}^{i}(\mathbb{Z}_{18})$ (*i* = 0, 1) are as Figure [4.](#page-6-0)

Proposition 2.6. Let us see $M = \mathbb{Z}_{2^n}$ as a \mathbb{Z} -module. Then we have $\omega(\mathbb{A} \mathbb{E}^0_{\mathbb{Z}}(M)) = n + 1$ $and \omega(\mathbb{A}\mathbb{E}^1_\mathbb{Z}(M)) = n - 1.$

Proof. Note that the uniserial Z-module $M = \mathbb{Z}_{2^n}$ is an Artinian Z-module such that $M \supset$ $\langle \overline{2} \rangle$ ⊃ $\langle \overline{4} \rangle$ ⊃ \cdots ⊃ $\langle \overline{2^{n-1}} \rangle$ ⊃ 0 is the only chain of all its submodules. One can check that $\mathbb{A}\mathbb{E}^0_{\mathbb{Z}}(M) \cong K_{n+1}$ and $\mathbb{A}\mathbb{E}^1_{\mathbb{Z}}(M) \cong K_{n-1}$, as needed.

FIGURE 4. $\mathbb{AE}^0_{\mathbb{Z}}(\mathbb{Z}_{18})$ $\mathbb{AE}^1_{\mathbb{Z}}$ $\frac{1}{\mathbb{Z}}(\mathbb{Z}_{18}).$

Theorem 2.7. *Suppose that M is a non-zero R-module. Then,*

- (i) *A submodule* $N = \text{ann}(I)$ *of* M *is a vertex of* $\mathbb{A}\mathbb{E}^1_R(M)$ *whenever* $I \subseteq \mathbb{Z}(M)$ *.*
- (ii) *In the case of M is a MacCoy R-module, then for each finitely generated ideal I of R with* $I \subseteq \mathbb{Z}(M)$, $\text{ann}_M(I)$ *is a vertex in* $\mathbb{AE}^1_R(M)$ *. In particular, in a finitely generated R*-module *M* such that *R* is a Noetherian ring, $I \subseteq Z(M)$ implies that $\text{ann}_M(I)$ is a *vertex in* $\mathbb{A}\mathbb{E}_R^1(M)$ *.*

Proof. (i) If $I \nsubseteq Z(M)$, then there exists a non-zero element $a \in I \cap (R - Z(M))$. Consequently, if $\text{ann}_M(a) = 0$, it follows that $\text{ann}_M(I) = 0$. Therefore, $\text{ann}_M(I)$ does not belong to the set of vertices of $\mathbb{A}\mathbb{E}_R^1(M)$.

(ii) The first statement follows from definition. The second part is obtained by [\[13](#page-13-1), Theorem 82], because when *R* is a Noetherian ring, then each finitely generated *R*-module *M* is a MacCoy module. \Box

Corollary 2.8. *If* R *is a ring with property (A), then for each finitely generated ideal* $I \subseteq Z(R)$ *,* $\text{ann}_R(I)$ *is a vertex of* $\mathbb{A}\mathbb{E}^0(R)$ *.*

Corollary 2.9. *Let M be a super coprimal R-module. Then for every finitely generated ideal I of R with* $I \subseteq \mathbb{Z}(M)$ *,* ann $M(I)$ *is a vertex in* $\mathbb{A}\mathbb{E}_R^0(M)$ *.*

Proof. The evidence is evident as each *R*-module that is super coprimal is also a McCoy *R*-module. \Box

Example 2.10. Consider $R = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then *R* is a MacCoy ring and also $Z(R)$ ${(0,0), (1,0), (0,1)}$. Note that all proper ideals of *R* are as follows: $I_1 = {(0,0)}$, $I_2 =$ $\{(0,0),(1,0)\}\$ and $I_3 = \{(0,0),(0,1)\}\$. Also, $I_i \subseteq Z(R)$ and $\text{ann}_R(I_i) \neq 0$ for $i = 1,2,3$. Thus, *R* is a McCoy ring. For $I_2 = \langle (1,0) \rangle$ and $I_3 = \langle (0,1) \rangle$, we have $\text{ann}_R(I_2) = 0 \times \mathbb{Z}_2 = I_3 \neq 0_R$ and $\text{ann}_R(I_3) = \mathbb{Z}_2 \times 0 = I_2 \neq 0_R$. Note that $I_2 + I_3 = \langle (1,0), (0,1) \rangle = R$ and $ann(I_2 + I_3) = ann(R) = 0$. Thus, $ann(I_2 + I_3)$ is not a vertex of $\mathbb{A} \mathbb{E}^1(R)$. Clearly, $ann(I_2) + ann(I_3) = I_3 + I_2 = R$ is essential in *R*. Since $I_2 \cap I_3 = \{(0,0)\} = 0_R$, hence neither I_2 nor I_3 is not essential ideal in R , see Figure [5](#page-7-0).

FIGURE 5. $\mathbb{A}\mathbb{E}^0(\mathbb{Z}_2\times\mathbb{Z}_2)$ $\mathbb{A}\mathbb{E}^1(\mathbb{Z}_2\times\mathbb{Z}_2)$.

Proposition 2.11. *Suppose M is a non-zero semisimple R-module. Then, two different annihilating submodules N and K of M are connected in* $\mathbb{A}\mathbb{E}_R^i(M)$ (*i* = 0, 1) *whenever* $N+K=$ *M. Moreover, since M is comultiplication, then* $\mathbb{AE}^i_R(M)$ (*i* = 0, 1) *has no isolated vertex.*

Proof. (i) The initial portion is evident, as a semisimple module does not have any proper essential submodule. For second part, since M is comultiplication, so $V(\mathbb{A}\mathbb{E}_R^0(M)) = \mathbb{S}(M)$ and $V(\mathbb{A}\mathbb{E}_R^1(M)) = \mathbb{S}^*(M)$. Assume, $N = \text{ann}_M(I)$, then there exists a submodule $K = \text{ann}_M(J)$ of *M* with $N \oplus K = M$ where *I* and *J* are two separate ideals of *R*. By the first part, *N* is adjacent to *K* in $\mathbb{A}\mathbb{E}_R^i(M)$ $(i = 0, 1)$. It implies that for every $N \in V(\mathbb{A}\mathbb{E}_R^i(M))$, $\deg_i(N) \geq 1$ for $i = 0, 1, \square$

Recall that a ring where every two ideals are comparable is named a *chained ring*. For instance, localization of $\mathbb Z$ at each prime ideal or furthermore generally every valuation domain is a chained ring.

Proposition 2.12. Let M be a comultiplication R -module, $N \in \text{Max}(M)$. Then for every $m ∈ M \setminus N$ *we have,*

- (i) If *M* is not a cyclic *R*-module, then $Rm N$ is an edge of $\mathbb{A}\mathbb{E}_R^1(M)$.
- (ii) If *R* is a chained ring, then $Rm \notin V(\mathbb{A}\mathbb{E}_R^1(M)).$

Proof. (i) Clearly, $Rm = \text{ann}_M(\text{ann}_R(Rm))$ and $N = \text{ann}_M(\text{ann}_R(N))$ are non-trivial submodules of M. Since $Rm + N = M$ is essential in M, so the proof is complete. Moreover, $deg_1(N) \geq |\{m : m \in M \setminus N\}|.$

(ii) We emphasize that every comultiplication module *M* over a chained ring *R* is a compariable module. According to $Rm \nsubseteq N$, so $N \subseteq Rm$ and so $Rm = N + Rm = M$ is not a vertex of $\mathbb{A}\mathbb{E}_R^1(M)$.

Theorem 2.13. Let *M* be a non-zero *R*-module and $\text{ann}_M(I) \leq^e M$ for some proper ideal *I of R. Then,*

- (i) diam($\mathbb{AE}_{R}^{i}(M)$) ≤ 2 *for* (*i* = 0, 1)*.*
- (ii) *Suppose M satisfies* DAC*. Whenever I and J are two separate comparable ideals in R, then* $\text{ann}_M(I)$ *and* $\text{ann}_M(J)$ *are adjacent in* $\mathbb{AE}^i_R(M)$ (*i* = 0, 1)*. Moreover, in the case that M is a uniserial module, then* $\mathbb{A}\mathbb{E}_R^i(M)$ *forms a complete graph for* $i = 0, 1$ *.*
- (iii) For every summand I in R such as J, $\text{ann}_M(J)$ is not a vertex of $\mathbb{A}\mathbb{E}_R^1(M)$.

Proof. (i) Note that $\text{ann}_M(I)$ is a universal vertex in $\mathbb{AE}^i_R(M)$ for $i = 0, 1$, because for every vertex $\text{ann}_M(J)$ of $\mathbb{AE}^i_R(M)$ $(i = 0, 1)$, $\text{ann}_M(I) + \text{ann}_M(J)$ is an essential submodule of M. In fact, we have

$$
\deg_i(\operatorname{ann}_M(I)) = |\mathcal{V}(\mathbb{A} \mathbb{E}_R^i(M))| - 1 \ \ (i = 0, 1).
$$

Now if $N = \text{ann}_M(J)$ and $K = \text{ann}_M(T)$ are two distinct annihilating submodules of M, then *N* − ann_{*M*}(*I*) − *K* is a path. Thus, $\mathbb{A}\mathbb{E}_R^i(M)$ is a connected graph and diam($\mathbb{A}\mathbb{E}_R^i(M)$) ≤ 2 for $(i = 0, 1)$.

(ii) Let $J \subsetneq I$, then $\text{ann}_M(I) \subsetneq \text{ann}_M(J)$. By assumption, $\text{ann}_M(J) \leq^e M$. Clearly, $\text{ann}_M(J) \neq 0$, so $\text{ann}_M(J) \in \text{V}(\mathbb{A} \mathbb{E}_R^1(M))$. Due to this $\text{ann}_M(I) + \text{ann}_M(J) = \text{ann}_M(J)$, it is essential in *M*, so $\text{ann}_M(I) - \text{ann}_M(J)$ is an edge in $\mathbb{AE}_R^0(M)$. Now if $I \subsetneq J$ (especially, $J = R$) for some ideal *J* of *R*, then $\text{ann}_M(I) + \text{ann}_M(J) = \text{ann}_M(I)$ is again an essential submodule of M, as needed. The second part is clear, see Example [2.4](#page-4-0) (iii).

(iii) Assume, $R = I + J$ for some ideal *J* of *R*. Be careful that, $\text{ann}_M(I) \cap \text{ann}_M(J)$ ann_{*M*}(*I* + *J*) = 0. By assumption, $\text{ann}_M(J) = 0$ since $\text{ann}_M(I) \leq^e M$. So $\text{ann}_M(J)$ is not a vertex of $\mathbb{A}\mathbb{E}_R^1(M)$.

Corollary 2.14. Let M be a strong comultiplication R-module under condition $J(R) \neq 0$. *Then three parts of Theorem [2.13](#page-8-0) are true.*

Proof. Since $J(R) \neq 0$, so R has a non-zero superfluous submodule *J*. Set $N = \text{ann}_M(J)$. Claim that *N* is a non-zero essential submodule of *M* only when *J* is a superfluous ideal of *R*. Clearly, since M is strong comultiplication and $J \neq R$, so N is a non-zero submodule in M. Propose that $N \cap L = 0$ for some submodule *L* of *M*. Based on the assumption, there is an ideal *X* in *R* such that $L = \text{ann}_M(X)$ and so $N \cap L = \text{ann}_M(J) \cap \text{ann}_M(X) = \text{ann}_M(J + X) = 0$. By hypothesis, $J + X = \text{ann}_R(\text{ann}_M(J + X)) = R$. Since *J* is superfluous, hence $X = R$ and so $L = 0$, as needed. The converse is similar. Hence, N is essential in M and the conditions of Theorem [2.13](#page-8-0) satisfy. \Box

Corollary 2.15. *If M is a non-zero uniform R-module, then* $\mathbb{AE}_R^i(M)$ $(i = 0, 1)$ *are complete graphs.*

Note that Corollary [2.15](#page-9-0) is not established for comultiplication modules, refer to Example [2.4](#page-4-0) (ii).

Corollary 2.16. *Let M be a non-zero R-module. If one of the following situations holds, then* $\mathbb{A}\mathbb{E}_R^1(M)$ is a null graph and $\mathbb{A}\mathbb{E}_R^0(M)$ is the complete graph $0 - M$.

- (i) *R is a field.*
- (ii) *M is simple.*
- (iii) *M* is a strong comultiplication *R*-module with $J(R) = 0$

Theorem 2.17. *Consider M as a non-zero R-module with* DAC*. In addition, let there exists an ideal I* of *R* with card(*I*) ≥ 2 *such that* $\text{ann}_M(I) \leq^e M$ *for some proper ideal I* of *R. Then* $gr(\mathbb{A}\mathbb{E}_R^i(M))=3.$

Proof. Assume that $\{a, b\}$ is a subset of *I*. By assumption, $\text{ann}_M(a)$ and $\text{ann}_M(b)$ are distinct annihilating essential submodules in *M*. Let $T \cap (\text{ann}_M(a) + \text{ann}_M(b)) = 0$ for some submodule *T* of *M*. Then $T \cap \text{ann}_M(I) = 0$. By assumption, $T = 0$. It conclude that $\text{ann}_M(a) - \text{ann}_M(b)$ is an edge. Hence, $\text{ann}_M(a) - \text{ann}_M(b) - \text{ann}_M(I) - \text{ann}_M(a)$, is a triangle, as needed. \Box

Corollary 2.18. *Let M be a strong comultiplication R-module. In addition, if there are noncomparable ideals I* and *J* in *R* such that $I + J$ is superfluous in *R*, then $\text{gr}(\mathbb{A}\mathbb{E}_R^i(M)) = 3$.

Proof. First let $i = 0$, then clearly $0 - \text{ann}_M(I) - M - 0$ is a triangle in $\mathbb{A}\mathbb{E}_R^0(M)$, since $\text{ann}_M(I)$ is essential in *M*. In the case, $i = 1$, suppose that $x \in I \setminus J$ and $y \in J \setminus I$. In virtue of Corollary [2.14,](#page-8-1) $\text{ann}_M(x)$, $\text{ann}_M(y)$ and $\text{ann}_M(I+J)$ are essential submodules of M. Then the proof results from Theorem [2.17](#page-9-1) and Corollary [2.14,](#page-8-1) because $\{x, y\} \subseteq I + J$.

Lemma 2.19. *If* $I \in \mathbb{I}(R)$, then $\text{ann}_R(M/\text{ann}_M(I)) = \text{ann}_R(IM)$.

Proof. Clearly, if *I* is a subset of $\text{ann}_R(M)$, then $IM = 0$ and the proof is clear. Now assume that $I \nsubseteq \text{ann}_R(M)$ and $r \in \text{ann}_R(M/\text{ann}_M(I))$. Then, $rM \subseteq \text{ann}_M(I)$ and so $rIM = 0$. Hence, $r \in \text{ann}_R(IM)$. The converse is similar. \Box

Theorem 2.20. *If* ann_{*M*}(*I*) *is a prime submodule of M such that* $I^2 \nsubseteq \text{ann}_R(M)$ *, then* ann_{*M*}(*I*) *is the collection of all elements m in M* where $rm \in \{mm_R(IM)M\}$ for some $r \in$ $R \setminus \text{ann}_R(IM)$ *. Furthermore,* $\text{ann}_M(I)$ *is a minimal prime submodule of* M.

Proof. By assumption, $\text{ann}_M(I)$ is a prime submodule of M, so $\mathfrak{p} = (\text{ann}_M(I) : R M) =$ ann_{*R*}(*M*/ann_{*M*}(*I*)) is a prime ideal of *R*. By Lemma [2.19](#page-9-2), ann_R (*IM*) = $\mathfrak{p} \in \text{Spec}(R)$. Let $H := \{m \in M : rm \in \mathfrak{p}M \text{ for some } r \notin \mathfrak{p}\}\$ and $m \in H$. Then, there exists $s \in R \setminus \mathfrak{p}$ such that $sm \in \mathfrak{p}M = \text{ann}_{R}(IM)M$. This implies that $sm = \sum_{i=1}^{k} s_{i}m_{i}$, where $s_{i} \in \mathfrak{p}$ and $m_{i} \in M$ for 1 ≤ *i* ≤ *k*. Thus, $sIm = \sum_{i=1}^{k} s_i Im_i = 0$ and so $sm \in \text{ann}_M(I)$. Since $s \notin \mathfrak{p}$, it follows that *m* ∈ ann_{*M*}(*I*). Therefore, *H* ⊆ ann_{*M*}(*I*). Conversely, let *m* ∈ ann_{*M*}(*I*). Then, *Im* = 0 ⊆ p*M*. If $I \nsubseteq \mathfrak{p}$, then there exists an element *r* in $I \setminus \mathfrak{p}$ so that $0 = rm \in \mathfrak{p}M$ and so $m \in H$. Now, if $I \subseteq \mathfrak{p} = \text{ann}_R(IM)$, then $I^2M = 0$ and so $I^2 \subseteq \text{ann}_R(M)$, a contradiction. Assume that $P \in \text{Spec}(M)$ and $P \subseteq \text{ann}_M(I)$. Let $m \in \text{ann}_M(I)$. Then, $Im = 0 \subseteq P$ which implies that *I* ⊆ ann_{*R*}(*M*/*P*) or *m* ∈ *P*. If *IM* ⊆ *P* ⊆ ann_{*M*}(*I*), then *I*² ⊆ ann_{*R*}(*M*), a contradiction. It implies that, $m \in P$ and so $P = \text{ann}_M(I)$.

Theorem 2.21. *Let M be an R-module. Then,*

- (i) Assume that for some proper non-nilpotent ideal I of R, $\text{ann}_M(I)$ is essential in M. *When R is an Artinian ring or M is a Noetherian module, then* $\mathbb{A}\mathbb{E}_R^i(M)$ (*i* = 0,1) *contains a complete subgraph.*
- (ii) If $IJ = 0$ for some ideal *J* in $\mathbb{I}^*(R)$, then $\text{ann}_M(I) \text{ann}_M(J)$ is an edge of $\mathbb{A}\mathbb{E}_R^i(M)$.
- (iii) If *I* is a finitely generated ideal of *R* and *I* is a subset of rad($\text{ann}_R(M)$), then $\mathbb{A}\mathbb{E}_R^i(M)$ $(i = 0, 1)$ *has a universal vertex.*
- (iv) Let $a, b \in R$. If $ab \notin \text{rad}(\text{ann}_R(M))$ and $\text{ann}_M(ab)$ is a prime submodule of M, then $\text{ann}_M(a)$ *is not connected to* $\text{ann}_M(b)$ *in* $\mathbb{AE}^i_R(M)$ *.*

Proof. (i) Consider the descending chain $I \supseteq I^2 \supseteq I^3 \supseteqeq \cdots$ from the ideals of *R* such that $I \in \mathbb{I}^*(R)$. According to assumption, there exists the smallest natural number $t \in \mathbb{N}$ such that $I^t = I^{t+k}$ for $k \geq 1$. Then $0 \subsetneq \text{ann}_M(I) \subseteq \text{ann}_M(I^2) \subseteq \cdots \subseteq \text{ann}_M(I^t)$ is an ascending chain of submodules of *M*. By assumption, for every $1 \leq s \leq t$, $\text{ann}_M(I^s)$ is an essential submodule of *M*. Thus for every $1 \leq i \neq j \leq t$, $\text{ann}_M(I^i) - \text{ann}_M(I^j)$ is an edge of $\mathbb{AE}_R^i(M)$ and so $\mathbb{A}\mathbb{E}_R^i(M)$ contains the complete subgraph K_t . For a Noetherian *R*-module *M* the proof is similar.

(ii) For each $I \in \mathbb{I}^*(R)$, $IM + \text{ann}_M(I)$ is essential in *M*. Let *N* be a submodule of *M* and $I \in \mathbb{I}^*(R)$. Then, $IN \subseteq IM \cap N \subseteq (IM + \operatorname{ann}_M(I)) \cap N$. If $(IM + \operatorname{ann}_M(I)) \cap N = 0$, then *IN* = 0 which implies that $N ⊆ \text{ann}_M(I)$. Hence, $N ⊆ (IM + \text{ann}_M(I)) ∩ N$ and so $N = 0$. Therefore, $IM + \text{ann}_M(I)$ is essential in M. Let $IJ = 0$ for some ideal *J* of *R* so $IJM = 0$,

thus $IM \subseteq \text{ann}_M(J)$ and so $IM + \text{ann}_M(I) \subseteq \text{ann}_M(J) + \text{ann}_M(I)$. This implies that $\text{ann}_M(I)$ is adjacent to $\operatorname{ann}_M(J)$ in $\mathbb{AE}^i_R(M)$ $(i = 0, 1)$, as needed.

(iii) By assumption, there exists the smallest number $t \in \mathbb{N}$, such that $I^tM = 0$, since *I* is finitely generated. Thus, $IM \subseteq \text{ann}_M(I^{t-1})$ and so $IM + \text{ann}_M(I) \subseteq \text{ann}_M(I^{t-1})$. So, $\min_M(I^{t-1})$ is an essential submodule of *M* by (ii). This implies that $\min_M(I^{t-1}) + \min_M(J)$ is essential in *M* for every $\text{ann}_M(J) \in \text{V}(\mathbb{A} \mathbb{E}_R^i(M))$ $(i = 0, 1)$, i.e., $\text{ann}_M(I^{t-1})$ is a universal vertex of $\mathbb{A}\mathbb{E}^i_R(M)$, and the proof is complete.

(iv) Note that

$$
\operatorname{ann}_M(a) + \operatorname{ann}_M(b) \subseteq \operatorname{ann}_M(Ra \cap Rb) \subseteq \operatorname{ann}_M(RaRb) = \operatorname{ann}_M(ab).
$$

By virtue of [\[6,](#page-13-16) Theorem 5 (iii)], $\text{ann}_M(ab)$ is not an essential submodule of M and so $\text{ann}_M(a)$ + $\text{ann}_M(b)$ is not an essential submodule of M, as we stated.

Corollary 2.22. *Let* M *be a non-zero module on a ring* R *with* DAC and $N, K \in V(\mathbb{A}\mathbb{E}_R^0(M))$. *Then,*

- (i) If $\text{rad}(\text{ann}_R(M))$ *is not zero, then* $\mathbb{AE}_R^0(M)$ *contains a complete subgraph.*
- (ii) *If M* is comultiplication with condition $|\text{Min}(M)| \geq 3$ and $\text{Min}(M) \cap ess(M) \neq \emptyset$, then $gr(A \mathbb{E}^{1}(M)) = 3.$

Proof. (i) Assume that $a \in \text{rad}(\text{ann}_R(M))$, thus there exists a smallest natural number *t*, such that $a^tM = 0$, so $0 \neq a^iM \subseteq \operatorname{ann}_M(a^{t-i})$ for $1 \leq i \leq t-1$ and so $\operatorname{ann}_M(a^{t-i}) \in V(\mathbb{A}E^0(M))$ for $1 \leq i \leq t-1$. By Theorem [2.21](#page-10-0) (ii), $\text{ann}_M(a)$ is an essential submodule of *M*. Now since $\text{ann}_M(a) \subseteq \text{ann}_M(a^i)$ for $2 \leq i \leq t-1$ so the annihilating submodules $\text{ann}_M(a^i)$ $(2 \leq i \leq t-1)$ are essential submodules of *M*. Thus, for every $1 \leq i \neq j \leq t-1$, $\text{ann}_M(a^i) + \text{ann}_M(a^j)$ is an essential submodule of *M* and so $\text{ann}_M(a^i) - \text{ann}_M(a^j)$ is an edge of $\mathbb{AE}^0(M)$. Therefore $\mathbb{A}\mathbb{E}^0(M)$ contains the complete subgraph K_{t-1} .

(ii) Let $\{K_1, K_2, K_3\} \subseteq \text{Min}(M)$ $\{K_1, K_2, K_3\} \subseteq \text{Min}(M)$ $\{K_1, K_2, K_3\} \subseteq \text{Min}(M)$. By [1, Theorem 3.2], $K_i \in \text{Min}(M)$ if and only if there exists $\mathfrak{m}_i \in \text{Max}(R)$ such that $K_i = (0 :_M \mathfrak{m}_i) \neq 0$ for all $1 \leq i \leq 3$. Therefore $\text{Min}(M) \subseteq \text{V}(\mathbb{A} \mathbb{E}^1(M))$ and since $\mathfrak{m}_i \cap \mathfrak{m}_j = 0$ for $1 \leq i \neq j \leq 3$ hence $K_i + K_j = \operatorname{ann}_M(\mathfrak{m}_i) + \operatorname{ann}_M(\mathfrak{m}_j) =$ $\text{ann}_M(\mathfrak{m}_i \cap \mathfrak{m}_j) = M$ is essential in *M*. Therefore $K_1 - K_2 - K_3 - K_1$ is a 3-cyclic in $\mathbb{A} \mathbb{E}^1(M)$, as needed. Note that, if *I* is a non-zero ideal of *R*, then there is a maximal ideal m such that *I* is contained in m. Thus, $0 \neq \text{ann}_M(\mathfrak{m}) \subseteq \text{ann}_M(I)$ and so $\text{ann}_M(I)$ is a vertex of graph $\mathbb{A}\mathbb{E}^{1}(M).$

3. Conclusions

In this paper, the basic properties of sum-annihilating essential submodule graph are examined, and related results presented. Additionally, the interaction between the graph-theoretic properties and the corresponding algebraic structures are investigated. In Definition [2.2](#page-3-0) we represented the sum-annihilating essential submodule graph of $\mathbb{AE}^0_\mathbb{R}(M)$ (resp., its subgraph $\mathbb{A}\mathbb{E}^1_\mathbb{R}(M)$) with the vertex set of all (resp., non-zero proper) annihilating submodules of M and two separate vertices *N* and *K* are adjacent in $\mathbb{AE}^i_R(M)$ (*i* = 0, 1), whenever $N + K$ is an essential submodule of *M*.

In Examples [2.4,](#page-4-0) [2.5,](#page-5-1) [2.10](#page-6-1), we presented some examples of such graphs. In Proposition [2.6](#page-5-2), we expressed that for the uniserial module $M = \mathbb{Z}_{2^n}$ as a \mathbb{Z} -module the clique numbers of $\mathbb{AE}_{\mathbb{Z}}^0(M)$ and $\mathbb{AE}_{\mathbb{Z}}^1(M)$ are $n+1$ and $n-1$, respectively. In Theorem [2.7](#page-6-2), we have provided conditions under which for an ideal *I* of *R*, $\text{ann}_M(I)$ is a vertex of graph $\mathbb{A}\mathbb{E}_R^1(M)$. In Corollaries [2.8,](#page-6-3) [2.9](#page-6-4), we concluded that whenever either *R* is a ring with property (A) or *M* is a super coprimal *R*-module, then for each finitely generated ideal *I* of *R* such that *I* is a subset of $\mathcal{Z}(R)$, $\text{ann}_M(I)$ is a vertex in $\mathbb{A}\mathbb{E}_R^0(M)$. In Proposition [2.11](#page-7-1), we demonstrated that if *M* is a non-zero semisimple module over *R*, then two distinct annihilating submodules *N* and *K* of *M* are connected in $\mathbb{AE}^i_R(M)$ (*i* = 0, 1) whenever $N + K = M$. Moreover, if M is comultiplication, then $\mathbb{A}\mathbb{E}_R^i(M)$ (*i* = 0,1) has no isolated vertex. In Proposition [2.12,](#page-7-2) we expressed that if *M* is a comultiplication module over *R* and *N* as its maximal submodule, then for every $m \in M \setminus N$ whenever *M* is not cyclic, $Rm - N$ is an edge of $\mathbb{A}\mathbb{E}_R^1(M)$. Also, if *R* is a chained ring, then $Rm \notin V(\mathbb{A}\mathbb{E}_R^1(M))$. Among various results, in theorem [2.13,](#page-8-0) it was demonstrated that when *M* is a non-zero *R*-module with $ann_M(I)$ essential in *M* for a certain proper ideal *I* in *R*, then $\text{diam}(\mathbb{A}\mathbb{E}_R^i(M)) \leq 2$ (*i* = 0, 1). Three results of theorem [2.13](#page-8-0) are Corollaries [2.14](#page-8-1), [2.15](#page-9-0) and [2.16](#page-9-3) so that the last result states the conditions under which $\mathbb{AR}^1_R(M)$ is a null graph and $\mathbb{AR}^0_R(M)$ is the complete graph $0-M$. In Theorem [2.17](#page-9-1) and Corollary [2.18](#page-9-4) we gave some conditions on the ring *R*, *R*-module *M* and ideals of *R* such that $gr(\mathbb{A}\mathbb{E}_R^i(M)) = 3$ (*i* = 0, 1). In Theorem [2.20](#page-10-1), we concluded that when $\text{ann}_M(I)$ is a prime submodule of *M* in such a way that I^2 is not included in $\text{ann}_R(M)$, then $\text{ann}_M(I)$ is the set of all elements *m* in *M* where $rm \in \text{ann}_{R}(IM)M$ for some $r \in R \setminus \text{ann}_{R}(IM)$. Additionally, in this scenario, $\text{ann}_M(I)$ is a minimal prime submodule of M.

Finally, in Theorem [2.21](#page-10-0) among various results, we proved that if for some proper nonnilpotent ideal *I* of *R*, $a_{mn}(I)$ is an essential submodule of *M*, whenever either *R* is an Artinian ring or *M* is a Noetherian module, then $\mathbb{AE}^i_R(M)$ (*i* = 0,1) contains a complete subgraph. As a result of this theorem in Corollary [2.22](#page-11-0) we concluded that if *M* is a non-zero module on a ring *R* with DAC and *N*, *K* are vertices of $\mathbb{AE}_R^0(M)$ with $\text{rad}(\text{ann}_R(M)) \neq 0$, then $\mathbb{A}\mathbb{E}^0_R(M)$ contains a complete subgraph. Also, in this case, if M is comultiplication with $|\text{Min}(M)| \geq 3$ and $\text{Min}(M) \cap ess(M) \neq \emptyset$, then $\text{gr}(\mathbb{A}\mathbb{E}^1(M)) = 3$.

Acknowledgments

The author is deeply grateful to the referee for careful reading of the manuscript and helpful comments and for her/his valuable suggestions which led to some improvements in the quality of this paper.

REFERENCES

- [1] H. Ansari-Toroghy and F. Farshadifar, *On comultiplication modules*, Korean Ann. Math., (2008) 1-10.
- [2] H. Ansari-Toroghy and F. Farshadifar, *Strong comultiplication modules*, CMU. J. Nat. Sci., **8** No. 1 (2009) 105-113.
- [3] A. Alilou and J. Amjadi, *The sum-annihilating essential ideal graph of a commutative ring*, Commun. Comb. Optim., **1** No. 2 (2016) 117-135.
- [4] J. Amjadi, *The essential ideal graph of a commutative ring*, Asian-Eur. J. Math., **11** No. 4 (2018) 1850058.
- [5] M. F. Atiyah and I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, 1969.
- [6] S. Babaei, Sh. Payrovi and E. Sengelen Sevim, *On the annihilator submodules and the annihilator essential graph*, Acta Math. Vietnam., **44** (2019) 905-914.
- [7] A. Barnard, *Multiplication modules*, J. Algebra, **71** No. 1 (1981) 174-178.
- [8] M. Behboodi and Z. Rakeei, *The annihilating-ideal graph of commutative rings I*, J. Algebra Appl., **10** No. 4 (2011) 727-739.
- [9] Z. A. El-Bast and P. F. Smith, *Multiplication modules*, Comm. Algebra, **16** No. 4 (1988) 755-779.
- [10] C. Faith, *Annihilator ideals, associated primes and Kasch-McCoy commutative rings*, Comm. Algebra, **19** No. 7 (1991) 1867-1892.
- [11] G. Hinkle and J. Huckaba, *The generalized Kronecker function and the ring R*(*X*), J. reine angew. Math., **292** (1977) 25-36.
- [12] C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, *Rings with property (A) and their extensions*, J. Algebra, **315** No. 2 (2007) 612-628.
- [13] I. Kaplansky, *Commutative Rings*, University of Chicago Press, Chicago and London, 1974.
- [14] T. Y. Lam, *Lectures on Modules and Rings*, Springer, 1999.
- [15] C. P. Lu, *Prime submodules of modules*, Comment. Math. Univ. St. Pauli., **33** No. 1 (1984) 61-69.
- [16] R. L. McCasland and M. E. Moore, *Prime submodules*, Comm. Algebra, **20** No. 6 (1992) 1803-1817.
- [17] S. Rajaee, *The annihilators comaximal graph*, Asian-Eur. J. Math., **15** No. 8 (2022) 2250153.
- [18] S. Rajaee and A. Abbasi, *Some results on the comaximal colon ideal graph*, J. Math. Ext., **16** No. 11 (2022) $(8)1-19.$
- [19] E. Snapper, *Completely Primary Rings. IV*, Ann. of Math., **55** (1952) 46-64.
- [20] A. Tuganbaev, *Rings Close to Regular*, Kluwer Academic, 2002.
- [21] F. Wang and H. Kim, *Foundations of Commutative Rings and Their Modules*, Springer Singapore, 2016.

Saeed Rajaee

Department of Mathematics, Faculty of Science, University of Payame Noor (PNU), P.O. Box 19395-3697, Tehran, Iran. saeed_rajaee@pnu.ac.ir