On left weakly jointly prime $(R,S)$-modules

Document Type : Research Paper

Authors

1 Department of Mathematics Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia.

2 Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Abstract

Let $R$ and $S$ be commutative rings and $M$ an $(R,S)$-module. A proper $(R,S)$-submodule $P$ of $M$ is called left weakly jointly prime if for each $(R,S)$-submodule $N$ of $M$ and elements $a,b$ of $R$ such that $abNS\subseteq P$ implies either $aNS\subseteq P$ or $bNS\subseteq P$. This paper defines left weakly jointly prime $(R,S)$-modules and presents some of their properties. On the other hand, a ring $R$ is called fully prime if each proper ideal of $R$ is prime. We extend this fact to $(R,S)$-modules. An $(R,S)$-module $M$ is called fully left weakly jointly prime if each proper $(R,S)$-submodule of $M$ is left weakly jointly prime. Moreover, we present some properties of fully left weakly jointly prime $(R,S)$-modules. At the end of this paper, we present our main results about the necessary and sufficient conditions for an arbitrary $(R,S)$-module to be fully left weakly jointly prime.
 

Keywords


[1] H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime submodules, Commun. Algebra, 39 No. 7 (2011) 2396-2416.
[2] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math., 38 No. 3 (2007) 247-252.
[3] A. Azizi, Weakly prime submodules and prime modules, Glasg. Math. J., 48 No. 2 (2006) 343-346.
[4] A. Azizi, Radical formula and weakly prime submodules, Glasg. Math. J., 51 No. 2 (2007) 405-412.
[5] A. Azizi, On prime and weakly prime submodules, Vietnam J. Math., 36 No. 3 (2008) 315-325.
[6] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hung., 113 No. 3 (2006) 243-254.
[7] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math., 32 No. 2 (2004) 185-195.
[8] W. D. Blair and H. Tsutsui, Fully prime rings, Comm. Algebra, 22 No. 13 (1994) 5389-5400.
[9] J. Dauns, Prime modules, J. fur Reine Angew. Math., 298 (1978) 156-181.
[10] T. Duraivel, S. Mangayarcarassy and K. Premkumar, Prime extension dimension of a module, J. Algebra Relat. Top., 6 No. 2 (2018) 97-106.
[11] K. R. Goodearl and R. B. Warfiled, An Introduction to Noncommutative Notherian Rings, Cambridge University Press, New York, 2004.
[12] A. Hajikarimi, Modules whose nonzero finitely generated submodules are dense, ASTA, 8 No. 1 (2021) 89-97.
[13] T. Khumprapussorn, S. Pianskool, and M. Hall, (R, S)-modules and their fully and jointly prime submodules, Int. Math. Forum, 7 No. 33 (2012) 163-1643.
[14] N. V. Sanh, A. V. Nguyen, K. F. U. Ahmed, S. Asawasamrit and L. P. Thao, Primeness in module category, Asian-Eur. J. Math., 3 No. 1 (2010) 145-154.
[15] T. Tsutsui, Fully prime rings II, Comm. Algebra, 24 No. 9 (1996) 2981-2989.
[16] D. A. Yuwaningsih, Some properties of left weakly jointly prime (R, S)-submodules, J. Indones. Math. Soc., 26 No. 2 (2020) 234-241.
[17] D. A. Yuwaningsih, I. E. Wijayanti and P. W. Prasetyo, On (R, S)-module homomorphisms, J. Phys. Conf. Ser., 1188 No. 1 (2019) 012114.