Congruences in seminearrings and their correspondence with strong ideals

Document Type : Research Paper

Authors

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Abstract

In this paper, we define the notion of strong ideal of a seminearring S. If S is a nearring or a ring then the concept of a strong ideal of S coincides with the usual ideal of S. We show that there is one-one correspondence between strong ideals of S and strong congruences on S. Using the concept of strong ideals, we prove classical isomorphism theorems on S. We study insertion of factors property and obtain basic results on equisemiprime ideals.

Keywords


[1] S. Aishwarya, B. S. Kedukodi and S. P. Kuncham, Commutativity in 3-prime nearrings through permutation identities, Asian-Eur. J. Math., 15 No. 06 (2022) 2250109.
[2] J. Ahsan, Seminear-rings characterized by their S-ideals. I., Proc. Japan Acad. Ser. A, 71 (1995) 101-103.
[3] J. Ahsan, Seminear-rings characterized by their S-ideals. II., Proc. Japan Acad. Ser. A, 71 (1995) 111-113.
[4] T. Amouzegar, An approach to extending modules via homomorphisms, Alg. Struc. Appl., 9 No. 1 (2022) 31-39.
[5] S. Bhavanari and S. P. Kuncham, Near rings, Fuzzy ideals and Graph theory, CRC Press, London, 2013.
[6] N. D. Gilbert and M. Samman, Clifford semigroups and seminear-rings of endomorphisms, Int. Electron. J. Algebra, 7 (2010) 110-119.
[7] N. D. Gilbert and M. Samman, Endomorphism seminear-rings of brandt semigroups, Commun. Algebra, 38 (2010) 4028-4041.
[8] J. S. Golan, Semirings and their Applications, Kluwer Acadamic Publishers, 1999.
[9] Y. B. Jun and K. Kim, On structures of Γ-seminear-rings, Int. Math. J., 1 (2002) 97-103.
[10] P. Khachorncharoenkul, P, K. Laipaporn and S. Wananiyakul, Left Almost Seminearrings, Lobachevskii J. Math., 41 (2020) 349-361.
[11] W. A. Khan, W. Arif and A. Taouti, Group seminearrings, J. Math. Computer Sci., 24 (2022) 338-344.
[12] W. A. Khan, A. Taouti, S. Karkain, A. Salami and W. Arif, Weakly prime and weakly primary ideals in gamma seminearrings, Eur. J. Appl. Math., 12 (2019) 544-552.
[13] K. Koppula, B. S. Kedukodi and S. P. Kuncham, Markov chains and rough sets, Soft comput., 23 (2019) 6441-6453.
[14] K. Koppula, B. S. Kedukodi and S. P. Kuncham, On perfect ideals of seminearrings, Beitr. Algebra Geom., 62 (2021) 823-842.
[15] K. Koppula, B. S. Kedukodi and S. P. Kuncham, On prime strong ideals of a seminearring, Mat. Vesn.,72 (2020) 243-256.
[16] N. Kornthorng and A. Iampan, A note on right full k-ideals of seminearrings, J. infor. math. sci., 3 (2012) 255-261.
[17] K. V. Krishna and N. Chatterjee, Representation of Near-Semirings and approximation of their categories, Southeast Asian Bull. Math., 31 (2007) 903-914.
[18] K. V. Krishna and N. Chatterjee, Holonomy decomposition of seminearrings, Southeast Asian Bull. Math., 31 (2007) 1113-1122.
[19] G. Manikandan and R. Perumal, Mid-units in duo seminearrings, J. Phys. Conf. Ser., 1850 (2021), 012037.
[20] S. Mouhssine and A. Boua, Homoderivations and semigroup ideals in 3-prime near-rings, Alg. Struc. Appl., 8 No. 2 (2021) 177-194.
[21] R. Mukherjee, P. Pal, T. Manna and S. K. Sardar, On additively completely regular seminearrings-ii, Commun. Algebra, 47 No. 5 (2019) 1954-1963.
[22] R. Mukherjee, P. Pal and S. K. Sardar, On additively completelyn regular seminearrings, Commun. Algebra, 45 (2017) 5111-5122.
[23] G. Pilz, Near-Rings: the Theory and its Applications, Revised Edition, NorthHollond Publishing Company, Amsterdam, 1983.
[24] A. Sahami, M. Rostami and S. Kalantari, On pseudo-contractibility of certain algebras related to a discrete semigroup, Alg. Struc. Appl., 8 No. 2 (2021) 145-155.
[25] S. K. Sardar and R. Mukherjee, On additively regular seminearrings, Semigr. Forum, 88 (2014) 541-554.
[26] W. G. Van Hoorn and B. Van Rootselaar, Fundamental notions in the theory of seminearrings, Compos. Math., 18 (1967) 65-78.
[27] H. J. Weinert, Seminearrings, seminearfields and their semigroup-theoretical background, Semigr. Forum, 24 (1982) 231-254.