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CONGRUENCES IN SEMINEARRINGS AND THEIR
CORRESPONDENCE WITH STRONG IDEALS

KAVITHA KOPPULA, BABUSHRI SRINIVAS KEDUKODI∗ AND SYAM PRASAD KUNCHAM

Abstract. In this paper, we define the notion of strong ideal of a seminearring S. If S is a

nearring or a ring then the concept of a strong ideal of S coincides with the usual ideal of S. We

show that there is one-one correspondence between strong ideals of S and strong congruences

on S. Using the concept of strong ideals, we prove classical isomorphism theorems on S. We

study insertion of factors property and obtain basic results on equisemiprime ideals.

1. Introduction

Seminearrings have several applications in various domains of mathematics. Hoorn and
Rootselaar [26] introduced the concept of seminearring combining the vices of semiring and
nearring. A right (resp. left) seminearring S is an algebraic structure with two binary opera-
tions such that S forms a semigroup with respect to these two binary operations and the right
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(resp. left) distributivity law holds. The set M(S) of all mappings on an additive semigroup
S with respect to addition and composition of mappings form a right seminearring.

Hoorn and Rootselaar [26] considered the kernel of a seminearring homomorphism as an ideal
of a seminearring. Then Ahsan [2] generalized this definition and discussed the properties of
regular seminearrings, a subclass of strongly idempotent seminearrings. Subsequently, Ashan
[3] showed that a subset containing all minimal prime ideals forms a Hausdorff space in a
distributively generated strongly idempotent seminearring.

Weinert [27] provided results on multiplicatively cancellative seminearrings. Kornthorng
and Iampan [16] extended the k-ideals of semirings to seminearrings and obtained related re-
sults. Gilbert and Samman [6, 7] discussed the results on endomosphism seminearring classes
over Clifford and Brandt semigroups. Sardar and Mukherjee [25] studied various types of
congruences on different types of additively regular seminearrings. This work was continued
in Mukherjee et al. [22], Mukherjee et al. [21]. Krishna and Chatterjee [17] utilized the idea of
S-semigroup that gives an algebraic representation of seminearrings to prove a categorical rep-
resentation. Further, they have classified seminearrings and provided approximate categories
of seminearrings in which a given seminearring is primitive.

Krishna and Chatterjee [18] used Eilenberg’s technique to study the structure of trans-
formation semigroups. In addition, the Holcombe’s holonomy decomposition of nearrings is
extended to seminearrings.

Khachorncharoenkul, Laipaporn and Wananiyakul [10] introduced left almost seminearrings
which are the generalization of left almost rings, near left almost semirings and left almost
semirings and investigated some properties on left almost seminearrings. Khana et al. [11]
introduced gamma seminearrings and gave characterization results. Then they introduced
different types of ideals of group seminearrings and proved the isomorphism theorems. Sub-
sequently, the notion of weakly prime and weakly primary ideals of gamma seminearring and
their characterizations have been presented in Khan et al. [12].

Manikandan and Perumal [19] introduced the concept of mid-units in seminearrings and
studied the relationship between the idempotents and mid-units of seminearrings. In addition,
they derived a condition for seminearrings to have a mid-unit. Koppula et al. [14] defined
the perfect ideal of a seminearring and proved isomorphism theorems by using the concept
tame morphism. Koppula et al. [15] defined various prime ideals of seminearrings and proved
results on radicals.

In the case of rings or nearrings, the explicit definition of an ideal exists, and ideals are
characterized by the kernel of homomorphism. However, the corresponding problem in sem-
inearrings is still unresolved. It is an interesting problem from the point of view of universal
algebra to find a definition of an ideal of a seminearring S that produces an order preserving
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one-one correspondence between congruences on S and ideals of S. To resolve this problem,
we introduce the concept of a strong ideal of a seminearring. Strong ideal generalizes the
notion of ideal in nearring. We also define an equisemiprime strong ideal of a seminearring S.
Equisemiprime strong ideal generalizes the notion of equisemiprime ideal in nearrings. Then
we prove some results related to commutator equisemiprime strong ideals.

2. Preliminaries

Definition 2.1. [26] A non-empty set S with respect to + and . is said to be a right semin-
earring if the following conditions are satisfied:

(1) (S,+) is a semigroup.
(2) There exists 0 ∈ S such that 0 + a = a+ 0 = a for all a ∈ S.
(3) (S, ·) is a semigroup.
(4) For all a, b, c ∈ S, (a+ b)c = ac+ bc.
(5) For all a ∈ S, 0a = 0.

Definition 2.2. [26] A map ψ from a seminearring S to be a seminearring S
′ is said to be

a seminearring homomorphism if ψ(mn) = ψ(m)ψ(n) and ψ(m + n) = ψ(m) + ψ(n) for all
m,n ∈ S.

Definition 2.3. Let (S,+) be a semigroup and A be a non-empty subset S. Then A is said
to be a subsemigroup of S, if a1, a2 ∈ A then a1 + a2 ∈ A.

Definition 2.4. A subsemigroup A of a seminearing S is said to be left invariant (resp. right
invariant) if SA ⊆ A (resp. AS ⊆ A) and A is invariant if it is both right and left invariant.

Definition 2.5. An equivalence relation R on S is said to be a congruence relation on S if
the following conditions hold.

(1) aRb and cRd then (a+ c) R (b+ d).
(2) aRb and cRd then (ac) R (bd), a, b, c, d ∈ S.

Definition 2.6. Let N be a nearring and I be an ideal of N, x, y ∈ N . Then I is said be an
equisemiprime ideal of N, if (x− y)rx− (x− y)ry ∈ I ∀r ∈ N, then x− y ∈ I.

Throughout this work, all seminearrings are considered as right seminearrings.
The isomorphism theorems on semirings are proved by using the notions of tame morphism

of semirngs and partitioning ideal of a semiring. For the isomorphism theorems on semirings,
we refer to Golan [8]. For the results and isomorphism theorems on nearrings, we refer to Pilz
[23], Bhavanari and Kuncham [5]. For the results on semigroups, nearrings, rings and modules,
we refer to Sahami et al. [24], Aishwarya et al. [1], Mouhssine and Boua [20] Koppula et al.
[13] and Amouzegar [4].
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3. Strong ideal of a seminearring

In this section, we give the definition of strong ideal of a seminearring S. Then we define
the concept of strong congruence relation on S and prove that there exists a one-one corre-
spondence between strong ideals of S and strong congruences. Then we prove isomorphism
theorems on seminearrings.

Throughout this paper, S denotes a right seminearring.

Definition 3.1. Let K be any subset of S, a, b ∈ S. Then a ≡K b iff there exist k1, k2 ∈ K

such that k1 + a = k2 + b.

Definition 3.2. A non-empty subset P of S is said to be a strong ideal of S if the following
conditions are satisfied.

(1) For a, b ∈ P, a+ b ∈ P (P + P ⊆ P ).
(2) For a ∈ S, a+ P ⊆ P + a.
(3) For a, b ∈ S, if a ≡P b then a ∈ P + b.
(4) a(P + b) ⊆ P + ab for all a, b ∈ S.
(5) Pa ⊆ P for all a ∈ S.

P is a left strong ideal of S, if P satisfies (1), (2), (3) and (4) whereas P is a right strong ideal
of S, if P satisfies (1), (2), (3) and (5) of the Definition 3.2.

Note 3.3. From (3) of Definition 3.2, as 0 ≡P 0, we get 0 ∈ P.

Proposition 3.4. Let P be a strong ideal of S.

(1) If x ∈ S and y ∈ P such that x+ y ∈ P then x ≡P y.
(2) If x ∈ S and y ∈ P such that y + x ∈ P then x ≡P y.
(3) If x, y ∈ P then x ≡P y.

Proof. (1) There exists p1 ∈ P such that x+ y = p1 (Because x+ y ∈ P ). Now, (x+ y) + y =

p1 + y. This implies x+ p2 = p1 + y [y ∈ P implies y + y = p2 ∈ P ]. As x+ P ⊆ P + x, there
exists p3 ∈ P such that x+ p2 = p3 + x. This gives p3 + x = p1 + y. Hence x ≡P y.

(2) There exists i1 ∈ P such that y+x = i1 (Because y+x ∈ P ). Now, y+(y+x) = y+ i1.
This implies i2 + x = y + i1 [y ∈ P implies y + y = i2 ∈ P ]. We have y + P ⊆ P + y. Then
there exists i3 ∈ P such that y + i1 = i3 + y. This gives i2 + x = i3 + y. Hence x ≡P y.

(3) The proof follows from (1).

Example 3.5. Let S = {0, p, q, r} be a set with respect to + and · defined as follows:
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+ 0 p q r

0 0 p q r

p p 0 r q

q q q q q

r r r r r

. 0 p q r

0 0 0 0 0

p 0 p 0 p

q q q q q

r q r q r

Then P = {0, p} is strong ideal of a seminearring S.

Proposition 3.6. If P and Q are strong ideals of S, then P +Q is a strong ideal of S.

Proof. If a, b ∈ P +Q, then clearly we get a+ b ∈ P +Q.
Now, take x ≡P+Q y. Then there exist k1, k2 ∈ P + Q such that k1 + x = k2 + y. As

k1, k2 ∈ P +Q ,we have k1 = p1+q1 and k2 = p2+q2, for some p1, p2 ∈ P and q1, q2 ∈ Q. Then
p1+(q1+x) = p2+(q2+y). This gives q1+x ≡P q2+y. This implies q1+x ∈ P+(q2+y). Then
there exists p3 ∈ P such that q1+x = (p3+ q2)+y = (q3+p3)+y, for some q3 ∈ Q. Therefore
q1+x = q3+(p3+y). This gives x ≡Q p3+y. This implies x ∈ Q+p3+y ⊆ Q+P+y ⊆ P+Q+y.

Let y ∈ s+(P +Q). Then ∃ k1 ∈ P +Q such that y = s+k1 = s+(p1+q1), for some p1 ∈ P

and q1 ∈ Q. Then there exists p2 ∈ P such that (s+ p1) + q1 = (p2 + s) + q1 = p2 + (s+ q1) =

p2 + (q2 + s) ∈ P +Q+ s, for some q2 ∈ Q. Hence s+ P +Q ⊆ P +Q+ s.
Let y ∈ s((P + Q) + s

′
). Then ∃ k ∈ P + Q such that y = s(k + s

′
) = s((p1 + q1) + s

′
),

for some p1 ∈ P and q1 ∈ Q. Then ∃ p2 ∈ P such that s(p1 + (q1 + s
′
)) = p2 + s(q1 + s

′
) =

p2 + (q2 + ss
′
) ∈ P +Q+ ss

′ , for some q2 ∈ Q. Hence s((P +Q) + s
′
) ⊆ P +Q+ ss

′ . Clearly,
we get (P +Q)s ⊆ P +Q.

Proposition 3.7. If P and Q are strong ideals of S, then P ∩Q is a strong ideal of Q.

Proof. As 0 ∈ P ∩Q, we have P ∩Q is non-empty. Now, take k1, k2 ∈ P ∩Q. As k1, k2 ∈ P ,
we get k1 + k2 ∈ P and as k1, k2 ∈ Q, we get k1 + k2 ∈ Q. This implies k1 + k2 ∈ P ∩Q.

Let z ∈ s+ P ∩Q. Then z = s+ k1, for some k1 ∈ P ∩Q. As k1 ∈ P , there exists p1 ∈ P

such that z = s + k1 = p1 + s. Then p1 + s = q2 + p1, for some q2 ∈ Q. Now, as k1 ∈ Q and
s ∈ Q, z = s+ k1 = q1 ∈ Q. Therefore q2 + p1 = q1 + 0. This also can be written as p1 ≡Q 0.
This implies p1 ∈ Q. Hence z = p1 + s ∈ P ∩Q+ s. Therefore s+ P ∩Q ⊆ P ∩Q+ s.

Now, take x ≡P∩Q y. Then there exist k1, k2 ∈ P ∩ Q such that k1 + x = k2 + y. As
k1, k2 ∈ P , we have x ≡P y. This implies x ∈ P + y. Then x = p1 + y, for some p1 ∈ P . As
y ∈ Q, there exists q1 ∈ Q such that p1 + y = q1 + p1. Therefore x + 0 = q1 + p1. This gives
0 ≡Q p1. This implies p1 ∈ Q. Therefore x = p1 + y ∈ P ∩Q+ y.

Let z ∈ s(P ∩ Q + s
′
). Then ∃ k1 ∈ P ∩ Q such that z = s(k1 + s

′
). As k1 ∈ P, we

have s(k1 + s
′
) = p1 + ss

′
, for some p1 ∈ P . As ss′ ∈ Q, there exists q1 ∈ Q such that
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p1 + ss
′
= q1 + p1. Similarly, as k1, k2 ∈ Q, s(k1 + s

′
) = q2 ∈ Q. Therefore q1 + p1 = q2 + 0.

This also can be written as p1 ≡Q 0. This implies p1 ∈ Q. Therefore z = p1+ss
′ ∈ P ∩Q+ss

′
.

Hence s(P ∩Q+ s
′
) ⊆ P ∩Q+ ss

′
.

Let z ∈ (P ∩Q)s. Then ∃ k ∈ P ∩Q such that z = ks. As k ∈ P and k ∈ Q, we get ks ∈ P

and ks ∈ Q. This implies ks ∈ P ∩ Q. Hence (P ∩ Q)s ⊆ (P ∩ Q). Thus P ∩ Q is a strong
ideal of Q.

In rest of the paper, we consider P as a strong ideal of S.

Proposition 3.8. ≡P is an equivalence relation on S.

Proof. Let a ∈ S. As 0 ∈ P , we have 0 + a = 0+ a. This gives a ≡P a. Hence ≡P is reflexive.
Now, take a ≡P b. Then p1 + a = p2 + b, for some p1, p2 ∈ P . This also can be written as

p2 + b = p1 + a. This implies b ≡P a. Hence ≡P is symmetric.
Let a ≡P b and b ≡P c. Then there exist p1, p2, p3, p4 ∈ P such that p1 + a = p2 + b and

p3 + b = p4 + c. Now, take p3 + (p1 + a) = p3 + (p2 + b). Then there exists p5 ∈ P such that
(p3+ p2)+ b = (p5+ p3)+ b [By condition (2) of Definition 3.2] = p5+(p3+ b) = p5+(p4+ c).
Therefore p3 + p1 + a = p5 + p4 + c. This implies p6 + a = p7 + c. [p3 + p1 = p6 ∈ P ; p5 + p4 =

p7 ∈ P ]. This gives a ≡P c. Hence ≡P is transitive.

Remark 3.9. An equivalence class containing s ∈ S is denoted by

[s]≡P = {s′ ∈ S | s ≡P s
′} = s/P

.

Definition 3.10. A congruence relation R on S is said to be a strong congruence relation on
S if [s]R ⊆ [0]R + s, ∀s ∈ S.

Proposition 3.11. ≡P is a strong congruence relation on S.

Proof. By Proposition 3.8, we have ≡P is an equivalence relation on S. Now, take r ≡P r
′ and

s ≡P s
′ . Then there exist p1, p2, p3, p4 ∈ P such that p1 + r = p2 + r

′ and p3 + s = p4 + s
′
.

Now, we have
(p1 + r) + (p3 + s) = (p2 + r

′
) + (p4 + s

′
),

⇒ p1 + (r + p3) + s = p2 + (r
′
+ p4) + s

′
.

Then there exist p5, p6 ∈ P such that

p1 + (p5 + r) + s = p2 + (p6 + r
′
) + s

′
,

⇒ p7 + r + s = p8 + r
′
+ s

′
[p1 + p5 = p7 ∈ P ; p2 + p6 = p8 ∈ P ].
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This gives r + s ≡P r
′
+ s

′ . Now, we have

(p1 + r)(p3 + s) = (p2 + r
′
)(p4 + s

′
),

⇒ p1(p3 + s) + r(p3 + s) = p2(p4 + s
′
) + r

′
(p4 + s

′
),

⇒ p5 + r(p3 + s) = p6 + r
′
(p4 + s

′
)[p1(p3 + s) = p5 ∈ P ; p2(p4 + s

′
) = p6 ∈ P ].

Then, there exist p7, p8 ∈ P such that

p5 + (p7 + rs) = p6 + (p8 + r
′
s
′
),

⇒ p9 + rs = p10 + r
′
s
′
[p5 + p7 = p9 ∈ P ; p6 + p8 = p10 ∈ P ].

This gives rs ≡P r
′
s
′ .

Now, take y ∈ [s]≡P . This gives y ≡P s. This implies y ∈ P + s = [0]≡P + s. Hence

[s]≡P ⊆ [0]≡P + s.

Thus ≡P is a strong congruence relation on S.

Note 3.12. If S is a ring or nearring, then the strong congruence relation coincides with the
usual congruence relation on S.

The following theorem gives the connection between the strong congruences on S and strong
ideals of S.

Theorem 3.13. The following statements hold.

(1) The binary relation θ defined on S as (s, s
′
) ∈ θ if and only if s ≡P s

′ (s ≡P s
′ implies

there exist p1, p2 ∈ P such that p1 + s = p2 + s
′) is a strong congruence relation on S

with (0/θ) = P.

(2) If θ is a strong congruence relation on S, then [0]θ = (0/θ) = {x ∈ S | x θ 0} is a
strong ideal of S and for s, s′ ∈ S we have (s, s

′
) ∈ θ if and only if s ≡[0]θ s

′
.

Proof. (1) By Proposition 3.11, we have ≡P is a strong congruence relation on S. Now, take
z ∈ (0/θ). This implies (z, 0) ∈ θ. This gives z ≡P 0. This implies z ∈ P. Hence (0/θ) ⊆ P .
As 0 ∈ P , clearly we get P ⊆ (0/θ). Therefore (0/θ) = P .

(2) Suppose θ is a strong congruence relation on S. As 0 θ 0, we have [0]θ is non-empty.
Now, take x, y ∈ [0]θ. Then x θ 0 and y θ 0. As θ is a congruence relation, (x+ y) θ 0. This
implies x+ y ∈ [0]θ.

Now, take z ∈ s+[0]θ. Then there exists p1 ∈ [0]θ such that z = s+p1. As p1 θ 0 and θ is a
congruence relation, we have (s+p1) θ (0+s). Therefore z θ s. This implies z ∈ [s]θ ⊆ [0]θ+s.
Hence (s+ [0]θ) ⊆ ([0]θ + s).
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Now, take z ∈ s([0]θ + s
′
). Then there exists p2 ∈ [0]θ such that z = s(p2 + s

′
). As p2 θ 0,

we get [s(p2 + s
′
)] θ (ss

′
). This implies z θ ss′ . Hence z ∈ [ss

′
]θ ⊆ [0]θ + ss

′ . Therefore
s([0]θ + s

′
) ⊆ [0]θ + ss

′ .
Let x ≡[0]θ y. Then p1 + x = p2 + y, for some p1, p2 ∈ [0]θ. As p1 θ 0 and p2 θ 0, we get

(p1 + x) θ x and (p2 + y) θ y respectively. Therefore x θ y. This implies x ∈ [y]θ ⊆ [0]θ + y.
Let z ∈ [0]θs. Then ∃ p ∈ [0]θ such that z = ps. As p θ 0, we get (ps) θ (0s). This implies

(ps) θ 0. Hence ps ∈ [0]θ. Therefore [0]θs ⊆ [0]θ. Thus [0]θ is a strong ideal of S.
Now, take (s, s

′
) ∈ θ. This implies s ∈ [s

′
]θ ⊆ [0]θ + s

′ . This gives s ∈ [0]θ + s
′ . This implies

∃ i ∈ [0]θ such that 0 + s = i+ s
′ . This gives s ≡[0]θ s

′ .
Now, consider s ≡[0]θ s

′ . This implies there exist i1, i2 ∈ [0]θ such that i1 + s = i2 + s
′ . As

i1, i2 ∈ [0]θ and θ is a congruence relation on S, we get (i1 + s) θ s and (i2 + s
′
) θ s

′ . Hence
s θ s

′ . Thus (s, s
′
) ∈ θ.

Corollary 3.14. The mapping θ → (0/θ) is an order preserving one-one correspondence
between the strong congruences on S and strong ideals of S.

Theorem 3.15. Define + and · on S/P as

(s/P ) + (s
′
/P ) = (s+ s

′
)/P,

(s/P ) · (s′/P ) = (ss
′
)/P.

Then (S/P,+, ·) is a seminearring.

Definition 3.16. Let ϕ : S → R be a seminearring homomorphism. Then

ker ϕ = {s ∈ S | ϕ(s) = ϕ(0)}.

Definition 3.17. Let S and R be seminearrings. Then a homomorphism ϕ : S → R is said
to be a strong homomorphism if ϕ(x) = ϕ(y) then x ∈ ker ϕ+ y.

Theorem 3.18. The following statements hold.

(1) The projection map π : S → S/P is an onto seminearring strong homomorphism.
(2) If ϕ : S → R is an onto seminearring strong homomorphism then ker ϕ is a strong

ideal of S and S/ker ϕ ∼= R.

Proof. (1) We have π : S → S/P defined by π(s) = s/P. Then clearly π is an onto seminearring
homomorphism.
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Now,

ker π = {s ∈ S | π(s) = 0/P}

= {s ∈ S | s/P = 0/P}

= {s ∈ S | s ≡P 0}

= {s ∈ S | s ∈ P}.

This implies ker π = P . Now, take π(x) = π(y). Then x/P = y/P . Because ker π = P is a
strong ideal, we have x ∈ ker π + y. Hence π is an onto seminearring strong homomorphism.

(2) Suppose ϕ : S → R is an onto strong homomorphism. As 0 ∈ S, we have 0 ∈ ker ϕ.
Hence ker ϕ is non-empty. Now, take a, b ∈ ker ϕ. Then ϕ(a) = ϕ(0) = ϕ(b). Consider
ϕ(a+ b) = ϕ(a) + ϕ(b) = ϕ(0) + ϕ(0) = ϕ(0). This implies a+ b ∈ ker ϕ.

Let z ∈ s + ker ϕ. Then z = s + k1, for some k1 ∈ ker ϕ. Now, ϕ(z) = ϕ(s + k1) =

ϕ(s) + ϕ(k1) = ϕ(s) + ϕ(0) = ϕ(s + 0) = ϕ(s). As ϕ is a strong homomorphism, we get
z ∈ ker ϕ+ s. Therefore s+ ker ϕ ⊆ ker ϕ+ s.

Let x ≡ker ϕ y. Then there exist k3, k4 ∈ ker ϕ such that k3 + x = k4 + y. Then

ϕ(k3 + x) = ϕ(k4 + y)

⇒ ϕ(k3) + ϕ(x) = ϕ(k4) + ϕ(y)

⇒ ϕ(0) + ϕ(x) = ϕ(0) + ϕ(y)

⇒ ϕ(0 + x) = ϕ(0 + y)

⇒ ϕ(x) = ϕ(y)

⇒ x ∈ ker ϕ+ y.

Let z ∈ s(ker ϕ + s
′
). Then z = s(k6 + s

′
), for some k6 ∈ ker ϕ. Now, Let x ≡ker ϕ y. Then

there exist k3, k4 ∈ ker ϕ such that k3 + x = k4 + y. Then

ϕ(z) = ϕ(s(k6 + s
′
))

= ϕ(s)ϕ(k6 + s
′
)

= ϕ(s)[ϕ(k6) + ϕ(s
′
)]

= ϕ(s)[ϕ(0) + ϕ(s
′
)]

= ϕ(s)ϕ(0 + s
′
)

= ϕ(s)ϕ(s
′
) = ϕ(ss

′
).

As ϕ is a strong homomorphism, we get z ∈ ker ϕ+ss
′ . Therefore s(ker ϕ+s′) ⊆ ker ϕ+ss

′ .
Now, take z ∈ (ker ϕ)s. Then z = ks, for some k ∈ ker ϕ. Now, ϕ(z) = ϕ(ks) = ϕ(k)ϕ(s) =

ϕ(0)ϕ(s) = ϕ(0s) = ϕ(0). This gives z ∈ ker ϕ. Therefore ker ϕ is a strong ideal of S.
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Now, define a map ψ : S/ker ϕ→ R as ψ(s/ker ϕ) = ϕ(s). Let s1/ker ϕ = s2/ker ϕ. Then
s1 ≡ker ϕ s2. This implies there exist k1, k2 ∈ ker ϕ such that

k1 + s1 = k2 + s2

⇒ ϕ(k1 + s1) = ϕ(k2 + s2)

⇒ ϕ(k1) + ϕ(s1) = ϕ(k2) + ϕ(s2)

⇒ ϕ(0) + ϕ(s1) = ϕ(0) + ϕ(s2)

⇒ ϕ(s1) = ϕ(s2)

⇒ ψ(s1/ker ϕ) = ψ(s2/ker ϕ).

Hence ψ is well-defined.
Now, take

ψ(s1/ker ϕ+ s2/ker ϕ) = ψ((s1 + s2)/ker ϕ)

= ϕ(s1 + s2) = ϕ(s1) + ϕ(s2)

= ψ(s1/ker ϕ) + ψ(s2/ker ϕ),

ψ((s1/ker ϕ)(s2/ker ϕ)) = ψ((s1s2)/ker ϕ)

= ϕ(s1s2) = ϕ(s1)ϕ(s2)

= ψ(s1/ker ϕ)ψ(s2/ker ϕ).

Let r ∈ R. Then ϕ(s) = r, for some s ∈ S. As s ∈ S, we have ψ(s/P ) = ϕ(s) = r. Hence ψ is
onto. Let ψ(s1/ker ϕ) = ψ(s2/ker ϕ). This implies ϕ(s1) = ϕ(s2).

As ϕ is a strong homomorphism, we get s1 ∈ ker ϕ+ s2. This implies there exists k ∈ ker ϕ

such that 0 + s1 = k + s2. This gives s1 ≡ker ϕ s2. This implies s1/ker ϕ = s2/ker ϕ. Hence
ψ is one-one. Thus S/ker ϕ ∼= R.

Now, we illustrate Theorem 3.18 with an example.

Example 3.19. Let S = {0, a, b, 1} be a set with respect to + and · defined as follows:

+ 0 a b 1

0 0 a b 1

a a 0 b 1

b b b b 1

1 1 1 1 1

. 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 0 b b

1 0 0 b 1
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Then S is a seminearring. Now, take R = {0, c, 1}(0 < c < 1). Then (R,max,min) is a
seminearring. Define ϕ : S → R as

ϕ(z) =


0, if z ∈ {0, a},

c, if z = b,

1, if z = 1.

Hence ϕ is an onto seminearring strong homomorphism, ker ϕ = {0, a}. Thus

S/ker ϕ = {0/ker ϕ, b/ker ϕ, 1/ker ϕ} ∼= R.

Theorem 3.20. If P and Q are strong ideals of S then

(P +Q)/P ∼= Q/(P ∩Q).

Proof. By Proposition 3.7, we have P ∩ Q is a strong ideal of Q. Define a mapϕ : P + Q →
Q/(P ∩Q) as ϕ(x+ y) = y/(P ∩Q). Then we will show that ϕ is well-defined. Let x1, x2 ∈ P

and y1, y2 ∈ Q such that x1 + y1 = x2 + y2. This gives y1 ≡P y2. As y1, y2 ∈ Q, we have
y1 ≡Q y2. Now, we show that y1/(P ∩Q) = y2/(P ∩Q).

Let z ∈ y1/(P ∩Q). Then there exist k1, k2 ∈ P ∩Q such that k1+z = k2+y1. As k1, k2 ∈ P ,
we have z ≡P y1 and as k1, k2 ∈ Q, we have z ≡Q y1. Because z ≡P y1 and y1 ≡P y2, we get
z ≡P y2. This implies z ∈ P + y2. Similarly, we get z ∈ Q+ y2.

Therefore z ∈ (P+y2)∩(Q+y2) ⊆ (P∩Q)+y2. This implies 0+z = k+y2, for some k ∈ P∩Q.
This gives z ≡P∩Q y2. This implies z ∈ y2/(P ∩ Q). Therefore y1/(P ∩ Q) ⊆ y2/(P ∩ Q).
Similarly, we get y2/(P ∩Q) ⊆ y1/(P ∩Q). Hence y1/(P ∩Q) = y2/(P ∩Q).

Now, take x, y ∈ P +Q. Then there exist x1, x2 ∈ P and y1, y2 ∈ Q such that

ϕ(x+ y) = ϕ((x1 + y1) + (x2 + y2))

= ϕ(x1 + (y1 + x2) + y2)

= ϕ(x1 + (x3 + y1) + y2),

for some x3 ∈ P . Then

ϕ((x1 + x3) + (y1 + y2)) = ϕ(x4 + y4) = y4/(P ∩Q)

= (y1 + y2)/(P ∩Q) = y1/(P ∩Q) + y2/(P ∩Q)

= ϕ(x1 + y1) + ϕ(x2 + y2) = ϕ(x) + ϕ(y).
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Similarly, we can show that ϕ(xy) = ϕ(x)ϕ(y). Hence ϕ is a homorphism and clearly ϕ is onto.
Now,

ker ϕ = {z ∈ P +Q|ϕ(z) = ϕ(0)}

= {z = p+ q ∈ P +Q, for some p ∈ P and q ∈ Q | ϕ(p+ q) = 0/(P ∩Q)}

= {p+ q ∈ P +Q|q/(P ∩Q) = 0/(P ∩Q)}

= {p+ q ∈ P +Q|q ∈ (P ∩Q)} = P.

Now, take x, y ∈ P +Q such that ϕ(x) = ϕ(y). This implies ϕ(p1 + q1) = ϕ(p2 + q2), for some
p1, p2 ∈ P and q1, q2 ∈ Q. Then we get q1/(P ∩Q) = q2/(P ∩Q). This gives q1 ≡P∩Q q2. This
implies q1 ∈ (P ∩Q) + q2.

Now, consider p2 + x = p2 + (p1 + q1) = (p2 + p1) + q1 = (p2 + p1) + (k1 + q2), for some
k1 ∈ (P ∩ Q). As k1 ∈ P , we have p2 + (p1 + k1) + q2 = (p2 + p3) + q2 [p1 + k1 = p3 ∈ P ].
Then there exists p4 ∈ P such that (p2 + p3) + q2 = (p4 + p2) + q2 = p4 + (p2 + q2) = p4 + y.
Therefore p2 + x = p4 + y. This gives x ≡P y. This implies x ∈ ker ϕ+ y. Hence ϕ is an onto
strong homomorphism. Then by Theroem 3.18, we get (P +Q)/P ∼= Q/(P ∩Q).

Theorem 3.21. If P and Q are strong ideals of S and P ⊆ Q then

S/Q ∼= (S/P )/(Q/P ).

Proof. Define a map ϕ : S/P → S/Q as ϕ(s/P ) = s/Q. Then ϕ is well-defined and an onto
homomrphism.

Now,

kerϕ = {s/P ∈ S/P |ϕ(s/P ) = ϕ(0)}

= {s/P ∈ S/P |s/Q = 0/Q}

= {s/P ∈ S/P |s ≡Q 0}

= {s/P ∈ S/P |s ∈ Q} = Q/P.

Let s1/P, s2/P ∈ S/P such that ϕ(s1/P ) = ϕ(s2/P ). This implies s1/Q = s2/Q. This gives
s1 ≡Q s2. This implies s1 ∈ Q + s2 and s2 ∈ Q + s1. Then there exist q1, q2 ∈ Q such
that s1 = q1 + s2 and s2 = q2 + s1. Hence we get s1/P = q1/P + s2/P ∈ Q/P + s2/P and
s2/P = q2/P + s1/P ∈ Q/P + s2/P . Therefore ϕ is strong. Hence ϕ is an onto seminearring
strong homomorphism. Thus by Theorem 3.18, we get S/Q ∼= (S/P )/(Q/P ).

Now, we illustrate Theorem 3.20 and Theorem 3.21 with the following example.

Example 3.22. Let S = {0, a, b, 1} be a set with respect to + and · defined as follows:
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+ 0 a b 1

0 0 a b 1

a a 0 1 b

b b 1 a 0

1 1 b 0 a

. 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 0 1 b

1 0 0 b 1

Then S is a seminearring and P = {0, a}, Q = {0, a, b, 1} are strong ideals of S. P partitions
S into the equivalence classes as {0/P, b/P}, where 0/P = {0, a} and b/P = {b, 1}. Similarly,
Q partitions S into a single equivalence class as 0/Q = {0, a, b, 1}.

Now, P + Q = {0, a, b, 1} and P ∩ Q = {0, a}. Then (P + Q)/P = {0/P, b/P} and
Q/(P ∩ Q) = Q/P = {0/P, b/P}. Hence (P + Q)/P ∼= Q/(P ∩ Q). Now, (S/P )/(Q/P ) =

{0/P, b/P}/{0/P, b/P} and S/Q = {0/Q}. Hence (S/P )/(Q/P ) ∼= S/Q.

Note 3.23. Suppose P satisfies conditions (1), (2), (4), (5) of Definition 3.2 and for every
a ∈ S, a ≡P 0 implies a ∈ P . Then (S/P,+, ·) forms a seminearring and all the isomorphism
theorems hold. However, to get the proper one-one correspondence between ideals and congru-
ences, we require additional conditions imposed on the definition of ideal, as illustrated in this
paper.

4. Results on prime strong ideals

In this section, we provide results related to equiprime strong, 3-prime strong and c-prime
strong ideals. These ideals are defined in Koppula, Kedukodi and Kuncham[15].

The following Definition 4.1 is actually defined on nearrings and is taken from Pilz[23],
which can also be used for seminearirngs.

Definition 4.1. Let P be a strong ideal of S. Then P is said to have an IFP (insertion of
factors property) for x, y ∈ S, if xy ∈ P then xsy ∈ P, ∀ s ∈ S.

Proposition 4.2. Let P be an equiprime strong ideal of S. If P has IFP then P is a c-prime
strong ideal of S.

Proof. Let x, y ∈ S such that xy ∈ P . Suppose x /∈ P . As P has IFP, we get xsy ∈ P, ∀s ∈ S.
From Koppula, Kedukodi and Kuncham[15], we have Sc ⊆ P . Then xs0 ∈ Sc ⊆ P, ∀s ∈ S.
Hence we have xsy ≡P xs0, ∀s ∈ S. As P is an equiprime strong ideal and x /∈ P , we get
y ≡P 0. This implies y ∈ P .

Proposition 4.3. Let P be a strong ideal of S. Then P is left invariant in S if and only if
s0 ∈ P, ∀ s ∈ S.
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Proof. As P is left invariant in S, we have SP ⊆ P . Since 0 ∈ P , we get s0 ∈ P, ∀s ∈ S.
Suppose s0 ∈ P, ∀s ∈ S. Let s ∈ S be fix and a ∈ P . Then sa = s(a + 0) ⊆ P + s0 ⊆ P . As
s ∈ S is arbitrary, we have SP ⊆ P . Thus P is left invariant in S.

Proposition 4.4. Let P be an equiprime strong ideal of S. Then P is left invariant in S.

Proof. Let m, r ∈ S such that (m0)r(m0) = m0 and (m0)r(0) = m0. Then (m0)r(m0) ≡P

(m0)r(0), ∀ r ∈ S. As I is an equiprime strong ideal, we get m0 ∈ P . Then by Proposition
4.3, P is left invariant in S.

Proposition 4.5. Let P be an equiprime strong ideal of S and J be an invariant subsemigroup
of S. Then J ∩ P is an equiprime strong ideal of J .

Proof. Let x ∈ J\(J ∩ P ) and a, b ∈ J such that xra ≡(J∩P ) xrb forall r ∈ J . Suppose
a ̸≡J∩P b. As a, b ∈ J , we have a ≡J b. Hence a ̸≡P b. Since P is an equiprime strong ideal of
S, there exists t ∈ S such that xta ̸≡P xtb. Similarly, as xta ̸≡P xtb and x /∈ P , there exists
n ∈ S such that xn(xta) ̸≡P xn(xtb). Since J is an invariant subsemigroup of S, we have
nxt ∈ J . Therefore x(nxt)a ≡(J∩P ) x(nxt)b. Which is a contradiction to xn(xta) ̸≡P xn(xtb).
Therefore our assumption a ̸≡J∩P b is wrong. Hence a ≡(J∩P ) b. Thus J ∩ P is an equiprime
strong ideal of J .

Definition 4.6. A strong ideal P of S is said to be a commutator equisemiprime strong ideal,
if the following conditions hold.

(1) (x+ y) ≡P (y + x), ∀ x, y ∈ S.
(2) For x, y ∈ S, if (yry + xrx) ≡P (xry + yrx) ∀ r ∈ S, then x ≡P y.

Proposition 4.7. If S is a nearring and P is a commutator equisemiprime strong ideal of S,
then [x, y] ∈ P, ∀ x, y ∈ S.

Proof. Let x, y ∈ S. As P is a commutator equisemiprime strong ideal, from Definition 4.6(1),
we have (x+ y) ≡P (y + x). This implies there exist p1, p2 ∈ P such that

p1 + x+ y = p2 + y + x

⇒ p1 + x+ y − x− y = p2

⇒ x+ y − x− y = −p1 + p2 ∈ P

⇒ [x, y] ∈ P.
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Proposition 4.8. If S is a nearring then every commutator equisemiprime strong ideal of S
is an equisemiprime ideal.

Proof. Let x, y ∈ S be such that yry + xrx ≡P xry + yrx, ∀ r ∈ S, then x ≡P y. Clearly,
x ≡P y implies x− y ∈ P . Now, fix r ∈ S. Then there exist p1, p2 ∈ P such that

p1 + yry + xrx = p2 + xry + yrx

⇒ p1 + yry + xrx− yrx = p2 + xry

⇒ p1 + yry + (x− y)rx = p2 + xry

⇒ yry + (x− y)rx = −p1 + p2 + xry

⇒ yry + (x− y)rx = p3 + xry, for some p3 = −p1 + p2 ∈ P.

⇒ (x− y)rx = −yry + p3 + xry.

⇒ (x− y)rx = (−yry + p3 + yry)− yry + xry.

Then there exists p4 ∈ P such that (x− y)rx = p4 + (−y + x)ry. Now, consider

(x− y)rx− (x− y)ry = p4 + (−y + x)ry − (x− y)ry,

for some p5 ∈ P , (From Proposition 4.7)

= p4 + (−y + x+ y − x)ry = p4 + p5ry,

for some p6 = p5ry ∈ P ,

= p4 + p6 ∈ P.

As r ∈ S is arbitrary, we have (x− y)rx− (x− y)ry ∈ P, ∀ r ∈ S implies x− y ∈ P . Thus
P is an equisemiprime ideal of S.

Proposition 4.9. If P is a commutator equisemiprime strong ideal of S, then Sc ⊆ I.

Proof. Let a ∈ Sc. Then ar ∈ S, ∀ r ∈ S. Let r ∈ S be arbitrarily fix. Then ara + 0r0 =

0ra + ar0. This gives ara + 0r0 ≡P 0ra + ar0. As r ∈ S is arbitrary, we have ara + 0r0 ≡P

0ra+ ar0, ∀ r ∈ S. Because P is an equisemiprime storng ideal, we get a ≡P 0. This implies
a ∈ P. Thus Sc ⊆ I.

Proposition 4.10. If P is a commutator equisemiprime strong ideal of S then P is a 3-
semiprime strong ideal.
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Proof. Let P be an equisemiprime strong ideal of S and a ∈ S such that ara ∈ P, ∀ r ∈ S.

Now, fix r ∈ S. As Sc ⊆ P, we have ar0 ∈ P. Because r ∈ S is an arbitrary, we have
ara + 0r0 ≡P 0ra + ar0, ∀ r ∈ S. As P is an equisemiprime, we get a ≡P 0. This implies
a ∈ P.

5. Conclusion

We have defined the concept of strong ideal of a seminearring with desirable properties from
the point of view of universal algebras. The ideas presented in this paper will help to extend
various results on seminearrings. We have defined a commutator equisemiprime strong ideal
of a seminearring and obtained related results.
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