Local automorphisms of n-dimensional naturally graded quasi-filiform Leibniz algebra of type I

Document Type : Research Paper

Authors

1 V. I. Romanovskiy Institute of Mathematics, University Street 9, Tashkent, 100174, Uzbekistan and Chirchiq State Pedagogical University, Amir Temur Street 104, 111700, Uzbekistan.

2 V. I. Romanovskiy Institute of Mathematics, University Street 9, Tashkent, 100174, Uzbekistan and Urgench State University, H. Alimdjan street 14, Urgench, 220100, Uzbekistan.

Abstract

The notions of a local automorphism for Lie algebras are defined as similar to the associative case. Every automorphism of a Lie algebra L is a local automorphism. For a given Lie algebra L, the main problem concerning these notions is to prove that they automatically become an automorphism or to give examples of local automorphisms of L, which are not automorphisms. In this paper, we study local automorphisms on quasi-filiform Leibniz algebras. It is proved that quasi-filiform Leibniz algebras of type I, as a rule, admit local automorphisms which are not automorphisms.

Keywords


[1] K. Abdurasulov, J. Adashev and I. Kaygorodov, Maximal solvable Leibniz algebras with a quasi-filiform nilradical, Mathematics, 11 No. 1 (2023) 1120.
[2] J. Adashev and B. Yusupov, Local derivations and automorphisms of direct sum null-filiform Leibniz algebras, Lobachevskii J. Math., 43 No. 12 (2022) 1-7.
[3] Sh. Ayupov, A. Elduque and K. Kudaybergenov, Local derivations and automorphisms of Cayley algebras, J. Pure Appl. Algebra, 227 No. 5 (2023) 107277.
[4] Sh. Ayupov and A. Khudoyberdiyev, Local derivations on Solvable Lie algebras, Linear Multilinear Algebra, 69 (2021) 1286-1301.
[5] Sh. Ayupov, A. Khudoyberdiyev and B. Yusupov, Local and 2-local derivations of Solvable Leibniz algebras, Int. J. Algebra Comput., 30 No. 6 (2020) 1185-1197.
[6] Sh. Ayupov and K. Kudaybergenov, 2-local automorphisms on finite-dimensional Lie algebras, Linear Algebra Appl., 507 (2016) 121-131.
[7] Sh. Ayupov and K. Kudaybergenov, Local derivations on finite-dimensional Lie algebras, Linear Algebra Appl., 493 (2016) 381-398.
[8] Sh. Ayupov and K. Kudaybergenov, Local Automorphisms on Finite-Dimensional Lie and Leibniz Algebras, In: Algebra, Complex Analysis and Pluripotential Theory: 2 USUZCAMP, Urgench, Uzbekistan, August 8-12, Springer International Publishing, 264 (2017) 31-44.
[9] Sh. Ayupov, K. Kudaybergenov and T. Kalandarov, 2-Local Automorphisms on AW*-Algebras, Positivity and Noncommutative Analysis: Festschrift in Honour of Ben de Pagter on the Occasion of his 65th Birthday, (2019) 1-13.
[10] Sh. Ayupov, K. Kudaybergenov and I. Rakhimov, 2-Local derivations on finite-dimensional Lie algebras, Linear Algebra Appl., 474 (2015) 1-11.
[11] T. Becker, J. Escobar, C. Salas and R. Turdibaev, On Local Automorphisms of sl2, Uzbek Mathematical Journal, No. 2 (2019) 27-34.
[12] Z. Chen and D. Wang, 2-Local automorphisms of finite-dimensional simple Lie algebras, Linear Algebra Appl., 486 (2015) 35-344.
[13] M. Costantini, Local automorphisms of finite dimensional simple Lie algebras, Linear Algebra Appl., 562 (2019) 123-134.
[14] H. Chen and Y. Wang, Local superderivation on Lie superalgebra q(n), Czechoslov. Math. J., 68 No. 3 (2018) 661-675.
[15] B. Ferreira, I. Kaygorodov and K. Kudaybergenov, Local and 2-local derivations of simple n-ary algebras, Ric. Mat., (2021) 1-10.
[16] B. Johnson, Local derivations on C*-algebras are derivations, Trans. Am. Math. Soc., 353 (2001) 313-325.
[17] R. Kadison, Local derivations, J. Algebra, 130 (1990) 494-509.
[18] I. Kaygorodov, K. Kudaybergenov and I. Yuldashev, Local derivations of semisimple Leibniz algebras, Commun. Math., 30 No. 2 (2022) 1-12.
[19] M. Khrypchenko, Local derivations of finitary incidence algebras, Acta Math. Hung., 154 No. 1 (2018) 48-55.
[20] S. Kim and J. Kim, Local automorphisms and derivations on Mn, Proc. Am. Math. Soc., 132 (2004) 1389-1392.
[21] P. Šemrl, Local automorphisms and derivations on B(H), Proc. Am. Math. Soc., 125 (1997) 2677-2680.
[22] Y. Wang, H. Chen and J. Nan, 2-Local superderivations on basic classical Lie superalgebras, J. Math. Res. Appl., 37 (2017) 527-534.
[23] Y. Wang, H. Chen and J. Nan, 2-Local automorphisms on basic classical Lie superalgebras, Acta Math.
Sin. Engl. Ser., 35 No. 3 (2019) 427-437.
[24] B. Yusupov, Local and 2-local derivations of some solvable Leibniz algebras, Uzbek Mathematical Journal,
No. 2 (2019) 154-166.