A class of almost uniserial rings

Document Type : Research Paper


Department of Mathematics, Faculty of Science, University of Jiroft, P.O. Box 78671-61167, Jiroft, Iran.


An $R-$module $M$ is called almost uniserial if any two non-isomorphic submodules of $M$ are comparable. A ring $R$ is an almost left uniserial ring if $_R R$ is almost uniserial. In this paper, we introduce a class of artinian almost uniserial rings. Also we give a classification of almost uniserial modules over principal ideal domains.


[1] M. Behboodi and S. Roointan-Isfahani, Almost uniserial rings and modules, J. Algebra, 446 (2016) 176-187.
[2] M. Behboodi and S. Roointan-Isfahani, Local rings whose modules are almost serial, J. Pure. Appl. Algebra, 223 No. 1 (2019) 369-379.
[3] H. R. Dorbidi, Some remarks on almost uniserial rings and modules, J. Algebr. Syst., 5 No. 1 (2017) 65-72.
[4] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math., 36 (1971) 109-121.
[5] A. Facchini, Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc., 348 (1996) 4561-4575.
[6] L. Fuchs and L. Salce, Uniserial modules over valuation rings, J. Algebra, 85 (1983) 14-31.
[7] W. K. Nicholson and E. Sanchez-Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271 No. 1 (2004) 391-406.
[8] R. B. Warfield Jr., Serial rings and finitely presented modules, J. Algebra, 37 (1975) 187-222.