On the maximal Randić energy of trees with given diameter

Document Type : Research Paper

Authors

1 Department of Mathematics, Shahed University, Tehran, Iran.

2 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Abstract

For given integers $n,d$ with $n\geq 5$ and $4\leq d \leq n-1$, let $T^{n}_d$ be the family of all trees of order $n$ and diameter $d$. In this paper, we study trees $T\in T^{n}_d$ with maximal Randić energy. We prove that if $T\in T^{n}_d$ is a tree with maximal Randić  energy then $T$ is obtained from a path $P=v_{0}v_{1} \ldots v_{d}$ by adding $ n_i$ path(s) $P_{3}$ to each vertex $v_{i}$, for $i= 2,3,4,\ldots,d-2$, where $n_i\in \{\lceil\frac{n-d+3}{2d-6}\rceil , \lfloor \frac{n-d+3}{2d-6}\rfloor\}$. In particular, we present families of trees satisfying the Gutman-Furtula-Bozkurt Conjecture proposed in [Linear Algebra Appl., 442 (2014), 50--57].

Keywords


[1] L. E. Allem, R. O. Braga and A. Pastine, Randić index and energy, MATCH Commun. Math. Comput. Chem., 83 (2020) 611-622.
[2] L. E. Allem, G. Molina and A. Pastine, Short note on Randić energy, MATCH Commun. Math. Comput. Chem., 82 (2019) 515-528.
[3] S. B. Bozkurt and D. Bozkurt, Randić energy and Randić Estrada index of a graph, Eur. J. Pure Appl. Math., 5 No. 1 (2012) 88-96.
[4] W. Gao, The Randić energy of generalized double sun, Czech. Math. J., 92 No. 1 (2021) 285-312.
[5] Y. Gao, W. Gao and Y. Shao, The minimal Randić energy of trees with given diameter, Appl. Math. Comput., 411 (2021) 126489.
[6] I. Gutman, B. Furtula and S. B. Bozkurt, On Randić energy, Linear Algebra Appl., 442 (2014) 50-57.
[7] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 No. 4 (1972) 535-538.
[8] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[9] I. Gutman, The Energy of a Graph: Old and New Results, In: A. Betten, A. Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 196-211, 2001.
[10] J. He, Y. M. Liu and J. K. Tian, Note on the Randić energy of graphs, Kragujevac J. Math., 42 No. 2 (2018) 209-215.
[11] X. Zhao, Y. Shao and Y. Gao, On Randić energy of coral trees, MATCH Commun. Math. Comput. Chem., 88 No. 1 (2022) 157-170.