

Algebraic Structures Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 3 (2024) pp 217-228.

Research Paper

ON THE MAXIMAL RANDIĆ ENERGY OF TREES WITH GIVEN DIAMETER

SHIVA SEPIDBON, NADER JAFARI RAD*[∗]* AND AKBAR JAHANBANI

ABSTRACT. For given integers *n, d* with $n \geq 5$ and $4 \leq d \leq n-1$, let T_d^n be the family of all trees of order *n* and diameter *d*. In this paper, we study trees $T \in T_d^n$ with maximal Randić energy. We prove that if $T \in T_d^n$ is a tree with maximal Randić energy then T is obtained from a path $P = v_0v_1 \ldots v_d$ by adding n_i path(s) P_3 to each vertex v_i , for $i = 2, 3, 4, \ldots, d-2$, where $n_i \in \{\lceil \frac{n-d+3}{2d-6} \rceil, \lfloor \frac{n-d+3}{2d-6} \rfloor\}$. In particular, we present families of trees satisfying the Gutman-Furtula-Bozkurt Conjecture proposed in [Linear Algebra Appl., 442 (2014), 50–57].

1. INTRODUCTION

Let $G = (V, E)$ be a graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = E(G)$, and let $|V(G)| = n$ and $|E(G)| = m$. If the vertices v_i and v_j are adjacent, we write $v_i v_j \in E(G)$. For $i = 1, 2, \ldots, n$, let $d_{v_i} = d_G(v_i)$ be the degree of the vertex v_i . If $d_{v_i} = 1$, then v_i is a *pendant* vertex. A set of edges *M* of a graph *G* is a *matching* if no pair of edges of *M* share a

MSC(2010): Primary: 05C50.

Keywords: Diameter, Randić index, Tree.

Received: 07 July 2023, Accepted: 08 November 2023.

© 2024 Yazd University.

DOI: 10.22034/as.2023.20297.1654

*[∗]*Corresponding author

vertex. A matching of size *k* is referred as a *k-matching*. The *eccentricity* of a vertex *v* is the greatest distance from *v* to any other vertex of *G*. The *diameter* of a graph is the maximum over eccentricities of all vertices of the graph and is denoted by *d*. A diametrical path of a graph is the shortest path whose length is equal to the diameter of the graph.

For an integer $p \geq 0$, the tree S^p of order $n = 2p + 1$, containing p pendant vertices, each attached to a vertex of degree 2, and a vertex of degree *p*, is called the *p-sun*.

For integers $p, q \ge 0$, the tree $DS^{p,q}$ of order $n = 2(p+q+1)$, obtained from a *p*-sun and a *q*-sun, by connecting their central vertices, is called a (*p, q*)-*double sun*.

The *adjacency matrix* $A = A(G)$ of a graph G is defined by its entries as $a_{ij} = 1$ if $v_i v_j \in E(G)$ and 0 otherwise. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be *eigenvalues* of the adjacency matrix of *G*. According to the eigenvalues of the adjacency matrix, the *energy* of a graph is defined as

$$
\mathcal{E} = \mathcal{E}(G) = \sum_{i=1}^{n} | \lambda_i |.
$$

The concept of energy of a graph was first used by Gutman in chemistry to approximate *π*-*electron* energy, see([[7](#page-11-0)], [\[8\]](#page-11-1), [\[9\]](#page-11-2)).

The *Randić matrix* is defined as $r_{ij} = \frac{1}{\sqrt{d}}$ $\frac{1}{d_{v_i}d_{v_j}}$ if $v_iv_j \in E(G)$ and 0 otherwise. The Randić matrix is real symmetric, so we can order its eigenvalues so that $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n$. The *Randić energy* (see [[3](#page-10-0)]) is defined as

$$
\mathcal{E}_R(G) = \sum_{i=1}^n |\rho_i|.
$$

Gutman, Furtula and Bozkurt presented the following conjecture in [[6](#page-11-3)] about the connected graphs with maximal Randić energy.

Conjecture 1.1 ([\[6\]](#page-11-3))**.** *Let G be a connected graph on n vertices. Then*

$$
\mathcal{E}_R(G) \le \begin{cases} \mathcal{E}_R(S^p), & \text{if } n = 2p + 1 \text{ is odd,} \\ \mathcal{E}_R(DS^{p,q}), & \text{if } n = 2(p + q + 1) \text{ is even.} \end{cases}
$$

Gao et al. in [[5](#page-11-4)] presented the minimal Randić energy of trees with a given diameter. Gao in [[4\]](#page-10-1), showed that the generalized double suns of odd order satisfy Conjecture [1.1.](#page-1-0) The validity of Conjecture [1.1](#page-1-0) over some other families of graphs is shown by Allem, Braga, Pastine and Molina, [\[1,](#page-10-2) [2\]](#page-10-3).

Let T_d^n be the class of trees of order *n* with diameter $4 \leq d \leq n-1$. Let $T \in T_d^n$ and $M_k(T)$ be the set of all k-matchings of *T*, for $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$. For $e = uv \in E(T)$ and $\alpha_k = \{e_1, e_2, \ldots, e_k\} \in M_k(T)$, we denote $R_T(e) = R_T(uv) = \frac{1}{d_T(u)d_T(v)}$, and $R_T(\alpha_k) =$ $\prod_{i=1}^{k} R_T(e_i)$. The *R-polynomial* of *T* can be written as

$$
\phi_R(T, x) = | xI - R(T) | = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T), k) x^{n-2k},
$$

where $b(R(T), 0) = 1$ and $b(R(T), k) = \sum$ *αk∈Mk*(*T*) $R_T(\alpha_k)$ for $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$ (see [\[10](#page-11-5)]).

Theorem 1.2 ([\[10](#page-11-5)]). Let $T_1, T_2 \in T_d^n$, and their R-polynomials be

$$
\phi_R(T_1, x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T_1), k) x^{n-2k}, \ \phi_R(T_2, x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T_2), k) x^{n-2k},
$$

respectively. If $b(R(T1), k) \geq b(R(T2), k)$ for all $k \geq 1$, and there is an integer number k such *that* $b(R(T_1), k) > b(R(T_2), k)$ *, then* $\mathcal{E}_R(T_1) > \mathcal{E}_R(T_2)$ *.*

In this paper, we study trees with a given diameter and maximal Randić energy, therefore, we find families of graphs satisfying Conjecture [1.1](#page-1-0). We prove for $n \geq 5$ and $4 \leq d \leq n-1$, if $T \in T_d^n$ be a tree with maximal Randić energy then *T* is obtained from a path $P = v_0v_1 \ldots v_d$ by adding n_i path(s) P_3 to each vertex v_i , for $i = 2, 3, 4, \ldots, d-2$, where $n_i \in \{\lceil \frac{n-d+3}{2d-6} \rceil, \lfloor \frac{n-d+3}{2d-6} \rfloor\}$ ^{<u>*u*−d+3</sub> |}.}</u>

2. Operations

In this section, we introduce some operations which are useful to obtain the maximum Randić energy trees of order *n* and diameter *d*. The following operations [1](#page-2-0) and [5](#page-3-0) were introduced in [[5](#page-11-4)] and [\[11](#page-11-6)], respectively.

Operation 1 ([[5](#page-11-4)]). Suppose that T is a tree, in addition, we assume that T_1 is a subtree of T , such that $v_1 \in V(T_1)$, $t \geq 3$ and $d_T(v_1) \geq 3$. Define $T' = T - \{v_1v_3, v_1v_4, \ldots, v_1v_t\} +$ *{v*2*v*3*, v*3*v*⁴ *. . . , vt−*1*vt}. The above-referred graphs are illustrated in Figure [1](#page-2-1).*

FIGURE [1.](#page-2-0) Trees *T* and *T'* for Operation 1.

We now present Operations [2,](#page-2-2) [3](#page-3-1) and [4](#page-3-2) as follows:

Operation 2. Suppose that T is a tree, in addition, we assume that T_1 is a subtree of T . *Define* $T' = T - \{u_{s-1}u_s\} + \{v_tu_s\}$. The above-referred trees are illustrated in Figure [2.](#page-3-3)

FIGURE [2.](#page-2-2) Trees *T* and *T'* for Operation 2.

Operation 3. *Suppose that T is a tree, in addition, we assume that T*¹ *is a subtree of* T , such that $v_1 \in V(T_1)$ and $d_T(v_1) \geq 3$. Define $T' = T - \{v_1u\} + \{v_tu\}$, $d_{T'}(v_1) \geq 2$, $d_T(v_1) = d_{T'}(v_1) + 1$ *. The above-referred trees are illustrated in Figure [3.](#page-3-4)*

FIGURE [3.](#page-3-1) Trees *T* and *T'* for Operation 3.

Operation 4. Suppose that T is a tree and T_1 is a subtree of T *, such that* $v_1 \in V(T_1)$ *. Define* $T' = T - \{u_{t-1}u_t\} + \{w_s u_t\}$. The above-referred trees are illustrated in Figure [4](#page-3-5).

FIGURE [4.](#page-3-2) Trees *T* and *T'* for Operation 4.

Operation 5 ([[11\]](#page-11-6)). *Suppose that T is a tree and* T_1 *is a subtree of* T *, with* $v_1 \in V(T_1)$ *such* that $d_T(v_1) \geq 2$, $t \geq 7$. Define $T' = T - \{v_4v_5 \dots v_t\} + \{v_1v_4v_5 \dots v_t\}$. The above-referred trees *are illustrated in Figure [5](#page-4-0).*

FIGURE [5.](#page-3-0) Trees *T* and *T'* for Operation 5.

3. Useful lemmas

In this section, we show that if a tree T' is obtained from a tree T by Operations [1](#page-2-0), [2](#page-2-2), [3](#page-3-1), [4](#page-3-2) and [5](#page-3-0) then $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$. The following two lemmas corresponding to Operations [3.1](#page-4-1) and [3.5](#page-9-0) were presented in [[5](#page-11-4)] and [\[11](#page-11-6)], respectively.

Lemma 3.1 ([\[5\]](#page-11-4)). Let T and T' be two trees satisfying the conditions of Operation [1.](#page-2-0) Then $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$.

We next present our lemmas for Operations [2,](#page-2-2) [3](#page-3-1) and [4](#page-3-2).

Lemma 3.2. *Let T and T ′ be two trees satisfying the conditions of Operation [2](#page-2-2). Then* $\mathcal{E}_R(T) = \mathcal{E}_R(T').$

Proof. Let the R-polynomials of *T* and *T ′* be

$$
\phi_R(T,x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T),k) x^{n-2k}, \ \phi_R(T',x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T'),k) x^{n-2k},
$$

respectively, where $b(R(T), 0) = b(R(T'), 0) = 1$. Then we have

$$
b(R(T'), 1) - b(R(T), 1) = R_{T'}(u_{s-2}u_{s-1}) + R_{T'}(v_{t-1}v_t) + R_{T'}(v_tu_s)
$$

\n
$$
-R_T(u_{s-2}u_{s-1}) - R_T(u_{s-1}u_s) - R_T(v_{t-1}v_t)
$$

\n
$$
= \frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} + \frac{1}{d_{T'}(v_{t-1})d_{T'}(v_t)} + \frac{1}{d_{T'}(v_t)d_{T'}(u_s)}
$$

\n
$$
- \frac{1}{d_T(u_{s-2})d_T(u_{s-1})} - \frac{1}{d_T(u_{s-1})d_T(u_s)} - \frac{1}{d_T(v_{t-1})d_T(v_t)}
$$

\n
$$
= \frac{1}{2} + \frac{1}{4} + \frac{1}{2} - \frac{1}{4} - \frac{1}{2} - \frac{1}{2}
$$

\n
$$
= 0.
$$

That is, $b(R(T'), 1) = b(R(T), 1)$. For $k = 2, \ldots, \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$, we denote $P_1 = v_1 u_1 u_2 \dots u_{s-2}$ and $P_2 = v_1 v_2 \dots v_{t-1}$, then we have

$$
b(R(T'), k) = \sum_{\alpha_{k} \in M_{k}(T_{1}\cup(p_{1}\cup p_{2}))} R_{T'}(\alpha_{k})
$$
\n
$$
+ (\frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} + \frac{1}{d_{T'}(v_{t})d_{T'}(u_{s})}) \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup(p_{1}-u_{s-2})\cup p_{2})} R_{T'}(\alpha_{k-1})
$$
\n
$$
+ (\frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} \times \frac{1}{d_{T'}(v_{t})d_{T'}(u_{s})} \sum_{\alpha_{k-2} \in M_{k-2}(T_{1}\cup(p_{1}-u_{s-2})\cup p_{2})} R_{T'}(\alpha_{k-2})
$$
\n
$$
+ (\frac{1}{d_{T'}(v_{t-1})d_{T'}(v_{t})} + \frac{1}{d_{T'}(v_{t})d_{T'}(u_{s})} \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup p_{1}\cup(p_{2}-v_{t-1}))} R_{T'}(\alpha_{k-1})
$$
\n
$$
+ (\frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} + \frac{1}{d_{T'}(v_{t-1})d_{T'}(v_{t})}
$$
\n
$$
+ \frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s})} \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T'}(\alpha_{k-1})
$$
\n
$$
+ (\frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} \times \frac{1}{d_{T'}(v_{t-1})d_{T'}(v_{t})}
$$
\n
$$
+ \frac{1}{d_{T'}(u_{s-2})d_{T'}(u_{s-1})} \times \frac{1}{d_{T'}(v_{t})d_{T'}(u_{s})} \sum_{\alpha_{k-2} \in M_{k-2}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T'}(\alpha_{k-2})
$$
\n
$$
+ \frac{1}{4} \sum_{\alpha_{
$$

Similarly, we have

$$
b(R(T), k) = \sum_{\alpha_k \in M_k(T_1 \cup (p_1 \cup p_2))} R_T(\alpha_k)
$$

+
$$
(\frac{1}{d_T(u_{s-2})d_T(u_{s-1})} + \frac{1}{d_T(u_{s-1})d_T(u_s)}) \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p_1 - u_{s-2}) \cup p_2)} R_T(\alpha_{k-1})
$$

+
$$
(\frac{1}{d_T(u_{s-1})d_T(u_s)} + \frac{1}{d_T(v_{t-1})d_T(v_t)}) \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p_1 \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-1})
$$

+
$$
(\frac{1}{d_T(u_{s-1})d_T(u_s)} \times \frac{1}{d_T(v_{t-1})d_T(v_t)}) \sum_{\alpha_{k-2} \in M_{k-2}(T_1 \cup p_1 \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-2})
$$

Alg. Struc. Appl. Vol. 11 No. 3 (2024) 217-228. 223

$$
+(\frac{1}{d_{T}(u_{s-2})d_{T}(u_{s-1})} + \frac{1}{d_{T}(u_{s-1})d_{T}(u_{s})} + \frac{1}{d_{T}(u_{s-1})d_{T}(u_{s})} + \frac{1}{d_{T}(v_{t-1})d_{T}(v_{t})} \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T}(\alpha_{k-1})
$$

+ $(\frac{1}{d_{T}(u_{s-2})d_{T}(u_{s-1})} \times \frac{1}{d_{T}(v_{t-1})d_{T}(v_{t})} + \frac{1}{d_{T}(u_{s-1})d_{T}(u_{s})} \times \frac{1}{d_{T}(v_{t-1})d_{T}(v_{t})} \sum_{\alpha_{k-2} \in M_{k-2}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T}(\alpha_{k-2})$
= $\sum_{\alpha_{k} \in M_{k}(T_{1}\cup(p_{1}\cup p_{2}))} R_{T}(\alpha_{k}) + \frac{3}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup(p_{1}-u_{s-2})\cup p_{2})} R_{T}(\alpha_{k-1}) + \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup p_{1}\cup(p_{1}-v_{t-1}))} R_{T}(\alpha_{k-1}) + \frac{1}{4} \sum_{\alpha_{k-2} \in M_{k-2}(T_{1}\cup p_{1}\cup(p_{2}-v_{t-1}))} R_{T}(\alpha_{k-2})$
+ $\frac{5}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T}(\alpha_{k-1}) + \frac{3}{8} \sum_{\alpha_{k-2} \in M_{k-2}(T_{1}\cup(p_{1}-u_{s-2})\cup(p_{2}-v_{t-1}))} R_{T}(\alpha_{k-2}).$

since

$$
\sum_{\alpha_k \in M_k(T_1 \cup p_1 \cup p_2)} R_T(\alpha_k) = \sum_{\alpha_k \in M_k(T_1 \cup p_1 \cup p_2)} R_{T'}(\alpha_k),
$$
\n
$$
\sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p_1 \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-1}) = \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p_1 - u_{s-2}) \cup p_2)} R_{T'}(\alpha_{k-1}),
$$
\n
$$
\sum_{\alpha_{k-2} \in M_{k-2}(T_1 \cup p_1 \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-2}) = \sum_{\alpha_{k-2} \in M_{k-2}(T_1 \cup (p_1 - u_{s-2}) \cup p_2)} R_{T'}(\alpha_{k-2}),
$$
\n
$$
\sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p_1 - u_{s-2}) \cup p_2)} R_T(\alpha_{k-1}) = \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p_1 \cup (p_2 - v_{t-1}))} R_{T'}(\alpha_{k-1}),
$$
\n
$$
\sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p_1 - u_{s-2}) \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-1}) = \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p_1 - u_{s-2}) \cup (p_2 - v_{t-1}))} R_{T'}(\alpha_{k-1}),
$$
\n
$$
\sum_{\alpha_{k-2} \in M_{k-2}(T_1 \cup (p_1 - u_{s-2}) \cup (p_2 - v_{t-1}))} R_T(\alpha_{k-2}) = \sum_{\alpha_{k-2} \in M_{k-2}(T_1 \cup (p_1 - u_{s-2}) \cup (p_2 - v_{t-1}))} R_{T'}(\alpha_{k-2}),
$$

it is easy to see that $b(R(T'), k) - b(R(T), k) = 0$. This implies $b(R(T'), 1) = b(R(T), 1)$. By Theorem [1.2,](#page-2-3) the lemma holds. $_\Box$

Lemma 3.3. *Let T and T ′ be two trees satisfying the conditions of Operation [3](#page-3-1). Then* $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$.

Proof. Let the R-polynomials of *T* and *T ′* be

$$
\phi_R(T,x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T),k) x^{n-2k}, \ \phi_R(T',x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T'),k) x^{n-2k},
$$

respectively, where $b(R(T), 0) = b(R(T'), 0) = 1$. Then we have

$$
b(R(T'), 1) - b(R(T), 1) = R_{T'}(v_1v_2) + R_{T'}(v_{t-1}v_t) + R_{T'}(v_tu)
$$

\n
$$
-R_T(v_1u) - R_T(v_1v_2) - R_T(v_{t-1}v_t)
$$

\n
$$
= \frac{1}{d_{T'}(v_1)d_{T'}(v_2)} + \frac{1}{d_{T'}(v_{t-1})d_{T'}(v_t)} + \frac{1}{d_{T'}(v_t)d_{T'}(u)}
$$

\n
$$
- \frac{1}{d_T(v_1)d_T(u)} - \frac{1}{d_T(v_1)d_T(v_2)} - \frac{1}{d_T(v_{t-1})d_T(v_t)}
$$

\n
$$
= \frac{1}{2d_{T'}(v_1)} + \frac{1}{4} + \frac{1}{2} - \frac{1}{d_{T}(v_1)} - \frac{1}{2d_T(v_1)} - \frac{1}{2}
$$

\n
$$
= \frac{1}{4} + \frac{1}{2d_{T'}(v_1)} - \frac{3}{2d_T(v_1)} > 0.
$$

This implies $b(R(T'), 1) > b(R(T), 1)$.

For $k = 2, ..., |\frac{n}{2}|$ $\frac{n}{2}$, we denote *p* = *v*₂*v*₃ *. . . v*_{*t*−1}. Then

$$
b(R(T'),k) = \sum_{\alpha_k \in M_k(T_1 \cup p)} R_{T'}(\alpha_k) + \frac{1}{d_{T'}(v_t) d_{T'}(u)} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p)} R_{T'}(\alpha_{k-1})
$$

+
$$
\frac{1}{d_{T'}(v_t) d_{T'}(u)} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_2))} R_{T'}(\alpha_{k-1})
$$

+
$$
(\frac{1}{d_{T'}(v_{t-1}) d_{T'}(v_t)} + \frac{1}{d_{T'}(v_t) d_{T'}(u)}) \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_{t-1}))} R_{T'}(\alpha_{k-1})
$$

+
$$
(\frac{1}{d_{T'}(v_{t-1}) d_{T'}(v_t)} + \frac{1}{d_{T'}(v_t) d_{T'}(u)}) \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-\{v_2, v_{t-1}\}))} R_{T'}(\alpha_{k-1})
$$

=
$$
\sum_{\alpha_k \in M_k(T_1 \cup p)} R_{T'}(\alpha_k) + \frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p)} R_{T'}(\alpha_{k-1})
$$

+
$$
\frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_2))} R_{T'}(\alpha_{k-1}) + \frac{3}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_{t-1}))} R_{T'}(\alpha_{k-1})
$$

+
$$
\frac{3}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-\{v_2, v_{t-1}\}))} R_{T'}(\alpha_{k-1}).
$$

Similarly, we have

$$
b(R(T),k) = \sum_{\alpha_k \in M_k(T_1 \cup p)} R_T(\alpha_k) + \frac{1}{d_T(v_{t-1})d_T(v_t)} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p - v_{t-1})} R_T(\alpha_{k-1})
$$

+
$$
\frac{1}{d_T(v_{t-1})d_T(v_t)} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p - \{v_2, v_{t-1}\})} R_T(\alpha_{k-1})
$$

=
$$
\sum_{\alpha_k \in M_k(T_1 \cup p)} R_T(\alpha_k) + \frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p - v_{t-1})} R_T(\alpha_{k-1})
$$

+
$$
\frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p - \{v_2, v_{t-1}\})} R_T(\alpha_{k-1}).
$$

Note that

$$
\sum_{\alpha_k \in M_k(T_1 \cup p)} R_{T'}(\alpha_k) = \sum_{\alpha_k \in M_k(T_1 \cup p)} R_T(\alpha_k),
$$

\n
$$
\sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_{t-1}))} R_{T'}(\alpha_{k-1}) = \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_{t-1}))} R_T(\alpha_{k-1}),
$$

\n
$$
\sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-\{v_2, v_{t-1}\}))} R_{T'}(\alpha_{k-1}) = \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-\{v_2, v_{t-1}\}))} R_T(\alpha_{k-1}),
$$

So, we get

$$
b(R(T'),k) - b(R(T),k) = \frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup p)} R_{T'}(\alpha_{k-1}) + \frac{1}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_2))} R_{T'}(\alpha_{k-1}) + \frac{1}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-v_{t-1}))} R_{T'}(\alpha_{k-1}) + \frac{1}{4} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p-\{v_2, v_{t-1}\})} R_{T'}(\alpha_{k-1}).
$$

On the other hand, since

$$
\sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup p)} R_{T'}(\alpha_{k-1}) \ge \sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup (p-\{v_2,v_{t-1}\})} R_{T'}(\alpha_{k-1}),
$$
\n
$$
\sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup (p-v_2))} R_{T'}(\alpha_{k-1}) \ge \sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup (p-\{v_2,v_{t-1}\})} R_{T'}(\alpha_{k-1}),
$$
\n
$$
\sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup (p-v_{t-1})} R_{T'}(\alpha_{k-1}) \ge \sum_{\alpha_{k-1}\in M_{k-1}(T_1\cup (p-\{v_2,v_{t-1}\})} R_{T'}(\alpha_{k-1}),
$$

we get

$$
b(R(T'), k) - b(R(T), k) \ge \frac{3}{2} \sum_{\alpha_{k-1} \in M_{k-1}(T_1 \cup (p - \{v_2, v_{t-1}\})} R_{T'}(\alpha_{k-1}) > 0.
$$

that is, $b(R(T'), k) > b(R(T), k)$. By Theorem [1.2](#page-2-3), the lemma holds.

Lemma 3.4. *Let T and T ′ be two trees satisfying the conditions of Operation [4](#page-3-2). Then* $\mathcal{E}_R(T) = \mathcal{E}_R(T').$

Proof. Let the R-polynomials of *T* and *T ′* be

$$
\phi_R(T,x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T),k) x^{n-2k}, \ \phi_R(T',x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k b(R(T'),k) x^{n-2k},
$$

respectively, where $b(R(T), 0) = b(R(T'), 0) = 1$. Then we have

$$
b(R(T'), 1) - b(R(T), 1) = R_{T'}(u_{t-2}u_{t-1}) + R_{T'}(w_{s-1}w_s) + R_{T'}(w_su_t)
$$

$$
-R_T(u_{t-2}u_{t-1}) - R_T(u_{t-1}u_t) - R_T(w_{s-1}w_s)
$$

$$
= \frac{1}{d_{T'}(u_{t-2})d_{T'}(u_{t-1})} + \frac{1}{d_{T'}(w_{s-1})d_{T'}(w_s)} + \frac{1}{d_{T'}(w_s)d_{T'}(u_t)}
$$

$$
- \frac{1}{d_T(u_{t-2})d_T(u_{t-1})} - \frac{1}{d_T(u_{t-1})d_T(u_t)} - \frac{1}{d_T(w_{s-1})d_T(w_s)}
$$

$$
= \frac{1}{2} + \frac{1}{4} + \frac{1}{2} - \frac{1}{4} - \frac{1}{2} - \frac{1}{2} = 0.
$$

Thus the above eequality is equivalent to $b(R(T'), 1) = b(R(T), 1)$. For $k = 2, \ldots, \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$, we use $p_1 = v_1v_2v_3$ and $p_2 = v_2u_1u_2...u_{t-2}, p_3 = v_3w_1w_2...w_{s-1}$. By the same argument as lemma [3.2](#page-4-2), we can prove that $b(R(T'), k) = b(R(T), k)$.

In [\[11](#page-11-6)], the following lemma is proved.

Lemma 3.[5](#page-3-0) ([\[11](#page-11-6)]). Let T and T' be two trees satisfying the conditions of Operation 5. Then $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$.

4. Main result

Let $T(n_2, n_3, \ldots, n_{d-2})$ be the class of trees *T* such that *T* is obtained from a path $P =$ $v_0v_1 \ldots v_d$ by adding n_i path(s) P_3 to each vertex v_i , for $i = 2, 3, 4, \ldots, d - 2$, where $n_i \in$ $\{\lceil \frac{n-d+3}{2d-6} \rceil, \lfloor \frac{n-d+3}{2d-6} \rfloor\}$ $\left[\frac{n-d+3}{2d-6}\right]$ }. Also, let $T'(n_2, n_3, \ldots, n_{d-2})$ be the class of trees T' such that T' is obtained from a tree $T \in T(n_2, n_3, \ldots, n_{d-2})$ by adding a leaf to one of the path(s) p_3 .

Theorem 4.1. *Let* $T \in T_d^n$ *be a tree with maximal Randić energy, where* $4 \leq d \leq n-1$ *and* $n \geq 5$. If n is odd and d is even or n is even and d is odd, then $T \in T(n_2, n_3, \ldots, n_{d-2})$. If *both n and d are odd or both n and d are even, then* $T \in T'(n_2, n_3, \ldots, n_{d-2})$ *.*

Proof. Let $T \in T_d^n$ be a tree with maximal Randić energy, where $4 \leq d \leq n-1$ and $n \geq 5$. We prove that if *n* is odd and *d* is even or *n* is even and *d* is odd, then there is a tree $T' \in T(n_2, n_3, \ldots, n_{d-2})$ such that $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$, and if both n and d are odd or both n and d are even, then there is a tree $T' \in T'(n_2, n_3, \ldots, n_{d-2})$ such that $\mathcal{E}_R(T) \leq \mathcal{E}_R(T')$. Let $P = v_0 v_1 v_2 \dots v_d$ be a diametrical path in *T*. By Lemma [3.1](#page-4-1), there is a tree $T_1 \in T_d^n$ such that $\mathcal{E}_R(T) \leq \mathcal{E}_R(T_1)$. By Lemmas [3.2](#page-4-2) and [3.3](#page-6-0), there is a tree $T_2 \in T_d^n$ such that $\mathcal{E}_R(T_1) \leq \mathcal{E}_R(T_2)$. Now, if there is a pendant vertex on the tree T_2 , applying Operation [3,](#page-3-1) then there is a tree $T_3 \in T_d^n$ as show in Figure [6](#page-10-4) such that $\mathcal{E}_R(T_2) \leq \mathcal{E}_R(T_3)$.

Note that by Lemma [3.4](#page-8-0) we have even number of vertices in each path connected to the diametrical path in Figure [6](#page-10-4). Finally by Lemma [3.5](#page-9-0) there is a tree $T_4 \in T(n_2, n_3, \ldots, n_{d-2})$ as shown in Figure [7](#page-10-5) such that $\mathcal{E}_R(T_3) \leq \mathcal{E}_R(T_4)$.

Figure 6. The tree *T*3.

Figure 7. The tree *T*4.

As a consequence of Theorem [4.1,](#page-9-1) we obtain the following which proves the validity of Conjecture [1.1](#page-1-0) for particular classes of trees.

Corollary 4.2. *Let* $T \in T_d^n$ *. Then*

$$
\mathcal{E}_R(T) \le \begin{cases} \mathcal{E}_R(S^p) & \text{if } d=4 \text{ and } n=2p+1 \\ \mathcal{E}_R(DS^{p,q}) & \text{if } d=5 \text{ and } n=2(p+q+1). \end{cases}
$$

5. Conclusion

In this paper, using Operations [1](#page-2-0), [2,](#page-2-2) [3](#page-3-1), [4](#page-3-2) and [5](#page-3-0) we have determined trees $T \in T_d^n$ with maximal Randić energy. In particular, we presented families of trees satisfying Conjecture [1.1.](#page-1-0)

REFERENCES

- [1] L. E. Allem, R. O. Braga and A. Pastine, *Randić index and energy*, MATCH Commun. Math. Comput. Chem., **83** (2020) 611-622.
- [2] L. E. Allem, G. Molina and A. Pastine, *Short note on Randić energy*, MATCH Commun. Math. Comput. Chem., **82** (2019) 515-528.
- [3] S. B. Bozkurt and D. Bozkurt, *Randić energy and Randić Estrada index of a graph*, Eur. J. Pure Appl. Math., **5** No. 1 (2012) 88-96.
- [4] W. Gao, *The Randić energy of generalized double sun*, Czech. Math. J., **92** No. 1 (2021) 285-312.
- [5] Y. Gao, W. Gao and Y. Shao, *The minimal Randić energy of trees with given diameter*, Appl. Math. Comput., **411** (2021) 126489.
- [6] I. Gutman, B. Furtula and S. B. Bozkurt, *On Randić energy*, Linear Algebra Appl., **442** (2014) 50-57.
- [7] I. Gutman and N. Trinajsti*c*´, *Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons*, Chem. Phys. Lett. **17** No. 4 (1972) 535-538.
- [8] I. Gutman and O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin, 1986.
- [9] I. Gutman, *The Energy of a Graph: Old and New Results*, In: A. Betten, A. Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 196-211, 2001.
- [10] J. He, Y. M. Liu and J. K. Tian, *Note on the Randić energy of graphs*, Kragujevac J. Math., **42** No. 2 (2018) 209-215.
- [11] X. Zhao, Y. Shao and Y. Gao, *On Randić energy of coral trees*, MATCH Commun. Math. Comput. Chem., **88** No. 1 (2022) 157-170.

Shiva Sepidbon

Department of Mathematics, Shahed University, Tehran, Iran. shiva.sepidbon@shahed.ac.ir **Nader Jafari Rad** Department of Mathematics, Shahed University, Tehran, Iran. n.jafarirad@shahed.ac.ir **Akbar Jahanbani** Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. akbarjahanbani92@gmail.com