Semihypergroups that every hyperproduct only contains some of the factors

Document Type : Research Paper


Faculty of science, Mahallat Institute of Higher Education, Mahallat, Iran


Breakable semihypergroups, defined by a simple property: every non-empty subset of them is a subsemihypergroup. In this paper, we introduce a class of semihypergroups, in which every hyperproduct of $n$ elements is equal to a subset of the factors, called $\pi_n$-semihypergroups. Then, we prove that every semihypergroup of type $\pi_{2k}$, ($k\geq 2$) is breakable and every semihypergroup of type $\pi_{2k+1}$ is of type $\pi_3$. Furthermore, we obtain a decomposition of a semihypergroup of type $\pi_n$ into the cyclic group of order 2 and a breakable semihypergroup. Finally, we give a characterization of semi-symmetric semihypergroups of type $\pi_n$.


[1] J. Chvalina and S. Hoskova-Mayerova, Discrete transformation hypergroups and transformation hypergroups with phase tolerance space, Discrete Math., 308 No. 18 (2008) 4133-4143.
[2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[3] P. Corsini, On Chinese hyperstructures, J. Discrete Math. Sci. Cryptogr., 6 No. 2-3 (2003) 133-137.
[4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academical Publications, Dordrecht, 2003.
[5] I. Cristea, M. Novak and B. O. Onasanya, Links between HX-groups and hypergroups, Algebra Colloq., 28 No. 03 (2021) 441-452.
[6] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
[7] B. Davvaz, Semihypergroup Theory, Elsevier/Academic Press, London, 2016.
[8] B. Davvaz, A. Dehghan-Nezhad and M. Mazloum-Ardakani, Chemical hyperalgebra: Redox reactions, MATCH Commun. Math. Comput. Chem., 71 No. 2 (2014) 323-331.
[9] M. De Salvo, D. Freni and G. Lo Faro, Fully simple semihypergroups, J. Algebra, 399 (2014) 358-377.
[10] M. Farooq, A. Khan and B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput., 22 (2018) 3001-3010.
[11] D. Freni, A note on the core of a hypergroup and the transitive closure β of β, Riv. Mat. Pura Appl., 8 (1991) 153-156.
[12] M. Gutan, Boolean matrices and semihypergroups, Rend. Circ. Mat. Palermo (1952-), 64 (2015) 157-165.
[13] D. Heidari and I. Cristea, Breakable semihypergroups, Symmetry, 11 No. 1 (2019) 100.
[14] D. Heidari and I. Cristea, On factorizable semihypergroups, Mathematics, 8 No. 7 (2020) 1064.
[15] D. Heidari and D. Freni, On further properties of minimal size in hypergroups of type U on the right, Commun. Algebra, 48 No. 10 (2020) 4132-4141.
[16] D. Heidari, D. Mazaheri and B. Davvaz, Chemical salt reactions as algebraic hyperstructures, Iran. J. Math. Chem., 10 No. 2 (2019) 93-102.
[17] D. Heidari, M. Amooshahi and B. Davvaz, Generalized Cayley graphs over polygroups, Commun. Algebra, 47 (2019) 2209-2219.
[18] L. Hongxing, HX-group, Busefal, 33 (1987) 31-37.
[19] L. Konguetsof, Sur les hypermonoides, Bull. Soc. Math. Belgique, t. XXV (1973).
[20] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl., 49 (1970) 155-192.
[21] F. Marty, Sur une generalization de la notion de groupe, In 8iem congres Math. Scandinaves, Stockholm, (1934) 45-49.
[22] C. G. Massouros, On connections between vector spaces and hypercompositional structures, It. J. Pure Appl. Math., 34 (2015) 133-150.
[23] C. G. Massouros, Hypercompositional structures from the computer theory, Ratio Math., 13 (1999) 37-42.
[24] C. G. Massouros and J. Mittas, Languages- Automata and hypercompositional structures, Proc. 4th Int. Cong. Algebraic Hyperstructures and Applications, Xanthi, (1990), 137-147, World Scientific.
[25] J. Pelikán, On semigroups, in which products are equal to one of the factors, Periodica Math. Hungarica, 4 (1973) 103-106.
[26] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967.
[27] M. Stef─ânescu and I. Cristea, On the fuzzy grade of the hypergroups, Fuzzy Sets Syst, 159 No. 9 (2008) 1097-1106.
[28] T. Tamura and J. Shafer, Power semigroups, Math. Japon., 12 (1967) 25-32.
[29] J. Tang and B. Davvaz, Study on Green’s relations in ordered semihypergroups, Soft Comput., 24 (2020) 11189-11197.
[30] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Inc., Palm Harbor, USA, 1994.
[31] B. Zhang, H. Li and Z. Li, HX-type Chaotic (hyperchaotic) System Based on Fuzzy Inference Modeling, Italian J. Pure Appl. Math., 39 (2018) 73-88.