[1] M. Aaly Kologani, Some results on L-algebars, Soft Comput., (2023) to appear.
[2] R. A. Borzooei and S. Khosravi Shoar, Impliation algebras are equivalent to the dual implicative BCKalgebras, Sci. Math. Jpn., 63 No. 3 (2006) 371-373.
[3] L. C. Ciungu, Results in L-algebras, Algebra Univers., 82 No. 7 (2021) 1-18.
[4] L. C. Ciungu, The Category of L-algebras, TFSS, 1 No. 2, (2022) 142-159.
[5] L. C. Ciungu, Quantifiers on L-algebras, Math. Slovaca., 72 No. 6 (2022) 1403-1428.
[6] V. G. Drinfeld, On Some Unsolved Problems in Quantum Group Theory, In: P.P. Kulish (Ed.), Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, Vol. 1510, Springer, Berlin, 1992.
[7] M. Harlenderová and J. Rachůnek, Modal operators on MV-algebras, Math. Bohem., 131 (2006) 39-48.
[8] M. Kondo, Modal operators on commutative residuated lattices, Math. Slovaca., 61 (2011) 1-14.
[9] D. S. Macnab, Modal operators on Heyting algebras, Algebra Univers., 12 (1981) 5-29.
[10] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co, Seoul, Korea, 1994.
[11] J. Rachůnek and D. S̆alounová, Modal operators on bounded commutative residuated Rℓ-monoids, Math. Slovaca., 57 (2007) 321-332.
[12] W. Rump, L-algebras, self-similarity, and ℓ-groups, J. Algebra, 320 (2008) 2328-2348.
[13] W. Rump, A general Glivenko theorem, Algebra Univers., 61 (2009) 455-473.
[14] W. Rump and Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Univers., 67 No. 2 (2012) 121-130.
[15] Y. L. Wu, J. Wang and Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets Syst., 369 (2019) 103-113.
[16] Y. L. Wu and Y. C. Yang, Orthomodular lattices as L-algebras, Soft Comput., 24 (2020) 14391-14400.