Document Type : Research Paper

**Author**

Department of mathematics, Faculty of science, Soran university, Kawa St., Erbil, Iraq.

**Abstract**

A transitive subgroup $G\leq S_n$ is called a genus $g$ group if there exist non identity elements $x_1,...,x_r\in G$ satisfying $G=\langle x_1,x_2,...,x_r\rangle$, $\prod_{i=1}^r {x_i}=1$ and $\sum_{i=1}^r ind\, x_i=2(n+g-1)$. The Hurwitz space $\mathcal{H}^{in}_{r,g}(G)$ is the space of genus $g$ covers of the Riemann sphere $\mathbb{P}^1\mathbb{C}$ with $r$ branch points and the monodromy group $G$. Isomorphisms of such covers are in one to one correspondence with genus $g$ groups.

In this article, we show that $G$ possesses genus one and two group if it is diagonal type and acts primitively on $\Omega$. Furthermore, we study the connectedness of the Hurwitz space $\mathcal{H}^{in}_{r,g}(G)$ for genus 1 and 2.

In this article, we show that $G$ possesses genus one and two group if it is diagonal type and acts primitively on $\Omega$. Furthermore, we study the connectedness of the Hurwitz space $\mathcal{H}^{in}_{r,g}(G)$ for genus 1 and 2.

**Keywords**

[1] M. Aschbacher and L. Scott, *Maximal subgroups of finite groups*, J. Algebra, **92 **No.1 (1985) 44-80.

[2] D. Frohardt and K. Magaard, *Composition factors of monodromy groups*, Ann. Math., (2001) 327-345.

[3] D. Frohardt, R. Guralnick and K. Magaard, *Genus 0 actions of groups of Lie rank 1*, In Proceedings of Symposia in Pure Mathematics, **70 **(2002) 449-484.

[4] GAP Group, *GAP-Groups, Algorithms, and Programming*, Version 4.6. 2, 2013.

[5] R. Guralnick and G. Thompson, *Finite groups of genus zero*, J. Algebra, **131 **No. 1 (1990) 303-341.

[6] B. Huppert, It Endliche Gruppen I, Vol. 134, Springer-verlag, 2013.

[7] X. Kong, *Genus 0, 1, 2 actions of some almost simple groups of lie rank 2*, Doctoral Thesis, Wayne State University, 2011.

[8] K. Magaard, S. Shpectorov and G. Wang, *Generating sets of affine groups of low genus*, Computational algebraic and analytic geometry, American Mathematical Society, Providence, Rhode Island, **572 **(2012) 173-192.

[9] H. M. Mohammed Salih, *Finite groups of small genus*, Doctoral dissertation, University of Birmingham, 2015.

[10] H. M. Mohammed Salih, *Hurwitz components of groups with socle PSL (3; q)*, Extr. math., **36 **No.1 (2021) 51-62.

[11] H. M. Mohammed Salih, *Connected components of affine primitive permutation groups*, J. Algebra, **561 **(2020) 355-373.

[12] G. M. Neubauer, *On solvable monodromy groups of fixed genus*, Doctoral dissertation, University of Southern California, 1990.

[13] T. Shih, *A note on groups of genus zero*, Commun. Algebra, **19 **No.10 (1991) 2813-2826.

[14] H. Volklein and V. Helmut, *Groups as Galois Groups: An Introduction*, No. 53, Cambridge University Press, 1996.

August 2023

Pages 41-50