[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Vol. 13, Grad. Texts in Math., Springer-Verlag, New York, 1992.
[2] A. El Moussaouy, A. R. Moniri Hamzekolaee and M. Ziane, Jacobson Hopfian modules, Alg. Discrete Math., 33 No. 1 (2022) 116-127.
[3] A. El Moussaouy, M. Khoramdel, A. R. Moniri Hamzekolaee and M. Ziane, Weak Hopfcity and singular modules, Ann. Univ. Ferrara, 68 (2022) 69-78.
[4] A. El Moussaouy and M. Ziane, Modules whose surjective endomorphisms have a γ-small kernels, Algebr. Struct. Appl., 9 No. 2 (2022) 121-133.
[5] A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra, 255 No. 2 (2022) 324-341.
[6] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math, 17 No. 7 (1986) 895-900.
[7] A. Kabban and K. Wasan, On jacobson-small submodules, Iraqi J. Agric. Sci., 60 No. 7 (2019) 1584-1591.
[8] A. R. Moniri Hamzekolaee, An approach to H-supplemented modules via noncosingular modules, Ann. Univ. Ferrara, 67 (2021) 111-120.
[9] A. C. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasgow Math. J., 48 (2006) 533-545.
[10] V. S. Ramamurthy and K. M. Rangaswamy, Generalized V-rings, Math. Scand., 31 (1972) 69-77.
[11] Y. Talebi, A. R. Moniri Hamzekolaee, M. Hosseinpour, A. Harmanci and B. Ungor, Rings for which every cosingular module is projective, Hacet. J. Math. Stat., 48 No. 4 (2019) 973-984.
[12] Y. Talebi, A. R. Moniri Hamzekolaee, A. Harmanci and B. Ungor, Rings for which every cosingular module is discrete, Hacet. J. Math. Stat., 49 No. 5 (2020) 1635-1648.
[13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30 No. 3 (2002) 1449-1460.
[14] K. Varadarajan, Hopfian and co-Hopfian objects, Publications Mat., 36 (1992) 293-317.
[15] Y. Wang, Generalizations of Hopfian and co-Hopfian modules, Int. J. Math. Sci., 9 (2005) 1455-1460.
[16] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7 No. 3 (2000) 305-318.