The minimum edge dominating energy of the Cayley graphs on some symmetric groups

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran.

Abstract

The minimum edge dominating energy of a graph $G$ is defined as the sum of the absolute values of eigenvalues of the minimum edge dominating matrix of $G$. In this paper, for some finite symmetric groups $\Gamma$ and subset $S$ of $\Gamma$, the minimum edge dominating energy of the Cayley graph of the group $\Gamma$, denoted by $Cay(\Gamma, S)$, is investigated.

Keywords


[1] M. H. Akhbari, K. K. Choong and F. Movahedi, A note on the minimum edge dominating energy of graphs, J. Appl. Math. Comput., 63 (2020) 295-310.
[2] M. Aschbacher, Finite Group Theory, 2nd edition, Cambridge University Press, 2012.
[3] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
[4] L. W. Beineke and R. J. Wilson, Topics in Algebraic Graph Theory, Cambridge University Press, USA, 2004.
[5] N. L. Biggs, Algebraic Graph Theory, 2nd edition, Cambridge University Press, Cambridge, England, 1993.
[6] S. B. Bozkurt and D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem., 72 (2014) 215-225.
[7] A. Cayley, Desiderata and suggestions: No. 2. the theory of groups: Graphical representation, Amer. J. Math., 1 (1878) 174-176.
[8] G. Chartrand and S. Schuster, On the independence number of complementary graphs, Trans. New York Acad. Sci., 36 No. 3 Series II (1974) 247-251.
[9] S. Chokani, F. Movahedi and S. M. Taheri, On the minimum edge dominating energy of the Cayley graphs for the finite group Sn, submitted (2022).
[10] S. Chokani, F. Movahedi and S. M. Taheri, Some of the graph energies of zero-divisor graphs of finite commutative rings, Int. J. Nonlinear Anal. Appl., (2022) doi: 10.22075/ijnaa.2022.7136.
[11] I. J. Dejter and R. E. Giudici, On unitary Cayley graphs, J. Combin. Math. Combin. Comput., 18 (1995) 121-124.
[12] A. F. A. Fadzil, N. H. Sarmin and A. Erfanian, The energy of Cayley Graphs for a generating subset of the dihedral Groups, Matematika: Mjiam, 35 No. 3 (2019) 371-376.
[13] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A., 37 (1951) 760-766.
[14] R. P. Gupta, In: proof Techniques in graph theory (ED. F. Harary), pp. 61-62, Academic press, New York, 1969.
[15] I. Gutman, A graph theoretical study of conjugated systems containing a linear polyene fragment, Croat. Chem. Acta, 48 No. 2(1976) 97-108.
[16] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz., 103 (1978) 1-22.
[17] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[18] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl., 431 No. 10 (2009) 1881-1889.
[19] W. Klotz and T. Sander, Some properties of unitary Cayley Graphs. Electron. J. Comb, 14 No. 1 (2007) Research Paper 45.
[20] K. Kutnar and D. Marušič, A complete classification of cubic symmetric graphs of girth 6, Comb. Theory Ser. B, 99 No. 1 (2009) 162-184.
[21] X. Ma, A low bound on graph energy in terms of minimum degree, MATCH Commun. Math. Comput. Chem., 81 (2019) 393-404.
[22] Š. MiklaviČ and P. Šparl, On minimal distance-regular Cayley graphs of generalized dihedral Groups, Electron. J. Comb., 27 No. 4 (2020), P4-33.
[23] Š. Miklavič and P. Potočnik, Distance-regular circulants, Europ. J. Combin., 24 (2003) 777-784.
[24] F. Movahedi, Bounds on the minimum edge dominating energy of induced subgraphs of a graph, Discrete Math. Algorithms Appl., 13 No. 06 (2021) 2150080.
[25] F. Movahedi, The relation between the minimum edge dominating energy and the other energies, Discrete Math. Algorithms Appl., 12 No. 6 (2020), 2050078.
[26] F. Movahedi and M. H. Akhbari, New results on the minimum edge dominating energy of a graph, J. Math. Ext., 16 No. 5 (2022) 1-17
[27] C. Payan, Sur le nombre d’absorption d’un graph simple cashiers centreÉ tud. Rech. opér., 17 (1975) 307-317.
[28] M. R, Rajesh Kanna, B. Dharmendra and G. Sridhara, The minimum dominating energy of a graph, Int. J. Pure Appl. Math., 85 (2013) 707-718.
[29] A. Tripi, Cayley Graphs of Groups and Their Applications, Thesis of Master of Science, The Graduate College of Missouri State University, 2017.