[1] A. R. Alehafttan, Dimension of non-summand submodules, Algebra Colloquium., To appear.
[2] A. R. Alehafttan, On the countably Noetherian dimension of modules, Comm. Algebra., 50 No. 7 (2022) 2775-2781.
[3] A. R. Alehafttan and N. Shirali, On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension, Bull. Iranian Math. Soc., 43 No. 7 (2017) 2457-2470.
[4] A. R. Alehafttan and N. Shirali, On the small Krull dimension of modules, Comm. Algebra., 46 No. 5 (2018) 2023-2032.
[5] G. Brookfield, The length of Noetherian modules, Comm. Algebra, 30 No. 7 (2002) 3177-3204.
[6] K. R. Goodearl and Jr. R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2004.
[7] T. H. Gulliksen, A theory of length for Noetherian modules, J. of Pure and Appl. Algebra, 3 (1973) 159-170.
[8] P. Halmos, Naive Set Theory, Springer-Verlag, 1974.
[9] O. A. S. Karamzadeh and A. R. Sajedinejad, Atomic modules, Comm. Algebra, 29 No. 7 (2001) 2757-2773.
[10] O. A. S. Karamzadeh and A. R. Sajedinejad, On the Loewy length and the Noetherian dimension of Artinian modules, Comm. Algebra, 30 No. 3 (2002) 1077-1084.
[11] O. A. S. Karamzadeh, and N. Shiral, On the countability of Noetherian dimension of modules, Comm. Algebra, 32 No. 10 (2004) 4073-4083.
[12] J. C. McConell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.
[13] M. A. D. Poter, Sets, An Introduction, Oxford University Press, 1990.
[14] L. Rowen, Ring Theory, Academic Press, 1988.
[15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.