A length for Artinian modules

Document Type : Research Paper

Author

Department of Mathematics, Jundi-Shapur University of Technology, Dezful, Iran.

Abstract

In this paper we shall introduce a theory of length for Artinian modules over an arbitrary ring (with identity), assigning to each Artinian module A an ordinal number len(A) which will briefly be called the length of A. We also demonstrate for some familiar properties of left Artinian ring be proved efficiently using length and arithmetic properties of ordinal numbers.

Keywords


[1] A. R. Alehafttan, Dimension of non-summand submodules, Algebra Colloquium., To appear.
[2] A. R. Alehafttan, On the countably Noetherian dimension of modules, Comm. Algebra., 50 No. 7 (2022) 2775-2781.
[3] A. R. Alehafttan and N. Shirali, On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension, Bull. Iranian Math. Soc., 43 No. 7 (2017) 2457-2470.
[4] A. R. Alehafttan and N. Shirali, On the small Krull dimension of modules, Comm. Algebra., 46 No. 5 (2018) 2023-2032.
[5] G. Brookfield, The length of Noetherian modules, Comm. Algebra, 30 No. 7 (2002) 3177-3204.
[6] K. R. Goodearl and Jr. R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2004.
[7] T. H. Gulliksen, A theory of length for Noetherian modules, J. of Pure and Appl. Algebra, 3 (1973) 159-170.
[8] P. Halmos, Naive Set Theory, Springer-Verlag, 1974.
[9] O. A. S. Karamzadeh and A. R. Sajedinejad, Atomic modules, Comm. Algebra, 29 No. 7 (2001) 2757-2773.
[10] O. A. S. Karamzadeh and A. R. Sajedinejad, On the Loewy length and the Noetherian dimension of Artinian modules, Comm. Algebra, 30 No. 3 (2002) 1077-1084.
[11] O. A. S. Karamzadeh, and N. Shiral, On the countability of Noetherian dimension of modules, Comm. Algebra, 32 No. 10 (2004) 4073-4083.
[12] J. C. McConell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.
[13] M. A. D. Poter, Sets, An Introduction, Oxford University Press, 1990.
[14] L. Rowen, Ring Theory, Academic Press, 1988.
[15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.