On GE-ideals of bordered GE-algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, St. Joseph's Degree College, Kurnool-518004, Andhra Pradesh, India.

2 Department of Mathematics, GITAM (Deemed to be University), Hyderabad Campus, Telangana-502329, India.

3 Department of Mathematics, MVGR College of Engineering, Chintalavalasa, Vizianagaram Andhra Pradesh, 535 005, India.

4 Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea.

Abstract

In this paper, the properties of GE-ideals of transitive bordered GE-algebra are studied and characterizations of GE-ideals are given. We have observed that the set of all GE-ideals of a transitive bordered GE-algebra forms a complete lattice. The notion of bordered GE-morphism is introduced and established fundamental bordered GE-morphism theorem. A congruence relation on a bordered GE-algebra with respect to GE-ideal is introduced and some bordered GE-morphism theorems are derived.

Keywords


[1] R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, On GE-algebras, Bull. Sect. Logic, 50 No. 1 (2021)81-96.
[2] R. K. Bandaru, M. A. Öztürk and Y. B. Jun, Bordered GE-algebras, J. Algebr. Syst. (submitted).
[3] S. Celani, A note on homomorphisms of Hilbert algebras, Int. J. Math. Math. Sci., 29 No. 1 (2002) 55-61.
[4] I. Chajda, R. Halas and Y. B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolinae, 43 No. 3 (2002) 407-417.
[5] A. Diego, Sur les algebres de Hilbert, Collection de Logique Mathematique, Edition Hermann, Serie A, XXI, 1966.
[6] S. M. Hong and Y. B. Jun, On deductive systems of Hilbert algebras, Commun. Korean Math. Soc., 11 No. 3 (1996) 595-600.
[7] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, P. Jpn. Acad. A-Math, 42 No. 1 (1966) 19-22.
[8] K. Iséki, An algebra related with a propositional calculus, P. Jpn. Acad. A-Math, 42 No. 1 (1966) 26-29.
[9] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math., 22 No. 4 (1996) 477-484.
[10] Y. B. Jun and K. H. Kim, H-filters of Hilbert algebras, Scient. Math. Japon., 62 No. 1 (2005) 143-148.
[11] Y. B. Jun, S. M. Hong, X. L. Xin and E. H. Roh, Chinese Remainder Theorems in BCI-algebras, Soochow J. Math., 24 No. 3 (1998) 219-230.
[12] H. S. Kim and Y. H. Kim, On BE-algebras, Scient. Math. Japon. Online e-2006, (2006) 1299-1302.
[13] S. R. Mukkamala, A Course in BE-algebras, Springer Science and Business Media LLC, 2018.
[14] M. A. Öztürk, J. G. Lee, R. K. Bandaru and Y. B. Jun, Strong GE-filters and GE-ideals of bordered GE-algebras, J. Math., 2021 (2021).
[15] J. K. Park, W. H. Shim and E. H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math., 27 No. 2 (2001) 153-160.
[16] A. Rezaei, A. Borumand Saeid and R. A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Appl. Math., 8 No. 2 (2013) 573-584.
[17] A. Rezaei, R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021) 1121-1136.
[18] S. Z. Song, R. K. Bandaru. and Y. B. Jun, Imploring GE-filters of GE-algebras, J. Math., 2021 (2021).