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ON GE-IDEALS OF BORDERED GE-ALGEBRAS

MANZOOR KALEEM SHAIK, RAVIKUMAR BANDARU∗, SAMBASIVA RAO MUKKAMALA AND

YOUNG BAE JUN

Abstract. In this paper, the properties of GE-ideals of transitive bordered GE-algebra are

studied and characterizations of GE-ideals are given. We have observed that the set of all GE-

ideals of a transitive bordered GE-algebra forms a complete lattice. The notion of bordered

GE-morphism is introduced and established fundamental bordered GE-morphism theorem.

A congruence relation on a bordered GE-algebra with respect to GE-ideal is introduced and

some bordered GE-morphism theorems are derived.

1. Introduction

BCK-algebras (see [7, 8]) were introduced by Y. Imai and K. Iséki in 1966 as the algebraic
semantics for a non-classical logic possessing only implication. Since then, the generalized
concepts of BCK-algebras have been studied by various scholars. Hilbert algebras were intro-
duced by L. Henkin and T. Skolem in the fifties for investigations in intuitionistic and other
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non-classical logics. A. Diego established that Hilbert algebras form a locally finite variety (see
[5]). Later several researchers extended the theory on Hilbert algebras (see [3, 4, 6, 9, 10]).
The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a generalization of
a dual BCK-algebra (see [12]). A. Rezaei et al. discussed relations between Hilbert algebras
and BE-algebras (see [13, 16]). In the study of algebraic structures, the generalization process
is also an important topic. As a generalization of Hilbert algebras, R.K. Bandaru et al. in-
troduced the notion of GE-algebras, and investigated several properties (see [1]). A. Rezaei et
al. introduced the concept of prominent GE-filters in GE-algebras and discussed its properties
(see [17]). R.K. Bandaru et al. introduced the concept of bordered GE-algebra and investi-
gated its properties (see [2]). Later, M. A. Ozturk et al. introduced the concept of Strong
GE-filters, GE-ideals of bordered GE-algebras and investigated its properties (see [14]). S. Z.
Song et al. introduced the concept of Imploring GE-filters of GE-algebras and discussed its
properties (see [18]). The isomorphism theorems play an important role in a general logical
algebra, which were studied by several researches. Jun et al. derived isomorphism theorems
by using Chinese Remainder Theorem in BCI-algebras (see [11]). J. K. Park et al. derived
isomorphism theorems of IS-algebras (see [15]).

In this paper, we study the properties of GE-ideals of a transitive bordered GE-algebra and
show that the set of all GE-ideals of a transitive bordered GE-algebra is a complete lattice.
We introduce the notion of bordered GE-morphism and establish fundamental bordered GE-
morphism theorem. We introduce a congruence relation on a bordered GE-algebra with respect
to GE-ideal and derive some bordered GE-isomorphism theorems.

2. Preliminaries

Definition 2.1 ([1]). A GE-algebra is a non-empty set X with a constant 1 and a binary
operation ∗̃ satisfying the following axioms:

(GE1) µ∗̃µ = 1,
(GE2) 1∗̃µ = µ,
(GE3) µ∗̃(ν∗̃τ) = µ∗̃(ν∗̃(µ∗̃τ))

for all µ, ν, τ ∈ X.

In a GE-algebra X, a binary relation “≤” is defined by

(1) (∀β, γ ∈ X) (β ≤ γ ⇔ β∗̃γ = 1) .

In general, the dual BCK/BCI-algebra satisfies the transitivity, but GE-algebra does not.
Therefore, it is necessary to define transitivity for the research of GE-algebra.

Definition 2.2 ([1]). A GE-algebra X is said to be
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• transitive if it satisfies:

(∀β, γ, α ∈ X) (β∗̃γ ≤ (α∗̃β)∗̃(α∗̃γ)) .(2)

• antisymmetric if the binary relation “≤” is antisymmetric.

Definition 2.3 ([2]). If a GE-algebra X has a special element, say 0, that satisfies 0 ≤ β for
all β ∈ X, we call X the bordered GE-algebra.

For every element β of a bordered GE-algebra X, we denote β∗0 by βϱ, and (βϱ)ϱ is denoted
by βϱϱ.

Definition 2.4 ([2]). If a bordered GE-algebra X satisfies the condition (2), we say that X

is a transitive bordered GE-algebra.

Definition 2.5 ([2]). A bordered GE-algebra X is said to be antisymmetric if the binary
operation “≤” is antisymmetric.

Proposition 2.6 ([1]). Every GE-algebra X satisfies the following items.

(∀µ ∈ X) (µ∗̃1 = 1) .(3)

(∀µ, ν ∈ X) (µ∗̃(µ∗̃ν) = µ∗̃ν) .(4)

(∀µ, ν ∈ X) (µ ≤ ν∗̃µ) .(5)

(∀µ, ν, τ ∈ X) (µ∗̃(ν∗̃τ) ≤ ν∗̃(µ∗̃τ)) .(6)

(∀µ ∈ X) (1 ≤ µ ⇒ µ = 1) .(7)

If X is transitive, then

(∀µ, ν, τ ∈ X) (µ ≤ ν ⇒ τ ∗̃µ ≤ τ ∗̃ν, ν∗̃τ ≤ µ∗̃τ) .(8)

Lemma 2.7 ([1]). In a GE-algebra X, the following facts are equivalent each other.

(∀β, γ, α ∈ X) (β∗̃γ ≤ (α∗̃β)∗̃(α∗̃γ)) .(9)

(∀β, γ, α ∈ X) (β∗̃γ ≤ (γ∗̃α)∗̃(β∗̃α)) .(10)

Definition 2.8 ([1]). A subset K of a GE-algebra X is called a GE-filter of X if it satisfies:

1 ∈ K,(11)

(∀β, γ ∈ X)(β∗̃γ ∈ K, β ∈ K ⇒ γ ∈ K).(12)

Lemma 2.9 ([1]). In a GE-algebra X, every GE-filter K of X satisfies:

(∀β, γ ∈ X) (β ≤ γ, β ∈ K ⇒ γ ∈ K) .(13)
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Proposition 2.10 ([2]). In a bordered GE-algebra X, the following assertions are valid.

1ϱ = 0, 0ϱ = 1.(14)

(∀β ∈ X) (β ≤ βϱϱ) .(15)

(∀β, γ ∈ X) (β∗̃γϱ ≤ γ∗̃βϱ) .(16)

(∀β, γ ∈ X) (β ≤ γϱ ⇔ γ ≤ βϱ) .(17)

(∀β, γ ∈ X) (β∗̃γϱ = β∗̃(γ∗̃βϱ)) .(18)

If X is a transitive bordered GE-algebra, then

(∀β, γ ∈ X) (β ≤ γ ⇒ γϱ ≤ βϱ) .(19)

(∀β, γ ∈ X) (β∗̃γ ≤ γϱ∗̃βϱ) .(20)

If X is an antisymmetric bordered GE-algebra, then

(∀β, γ ∈ X) (β∗̃γϱ = γ∗̃βϱ) .(21)

If X is a transitive and antisymmetric bordered GE-algebra, then

(∀β ∈ X) (βϱϱϱ = βϱ) .(22)

Definition 2.11 ([2]). By a duplex bordered element in a bordered GE-algebra X, we mean
an element β of X which satisfies βϱϱ = β.

The set of all duplex bordered elements of a bordered GE-algebra X is denoted by 02(X),
and is called the duplex bordered set of X. It is clear that 0, 1 ∈ 02(X).

Definition 2.12 ([2]). A bordered GE-algebra X is said to be duplex if every element of X is
a duplex bordered element, that is, X = 02(X).

Definition 2.13 ([14]). Let X be a bordered GE-algebra. If a subset G of X meets the
following conditions for all β, γ ∈ X, it is termed a GE-ideal of X:

(i) 0 ∈ G,

(ii) β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G imply that γ ∈ G.

Proposition 2.14 ([14]). Let G be a GE-ideal of X. Then we have

(i) For any β, γ ∈ X,β ∈ G and γ ≤ β imply γ ∈ G.

(ii) For any β, γ ∈ X, (β∗̃γ)ϱ ∈ G, γ ∈ G ⇒ β ∈ G.
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3. Characterizations of GE-ideals

In this section, we study properties of GE-ideals of a transitive bordered GE-algebra and
derive characterization theorems of GE-ideals. Throughout this section, X means a transitive
bordered GE-algebra (X, ∗̃, 1) unless otherwise mentioned.

Lemma 3.1. For any β, γ ∈ X, we have

(i) βϱϱϱ ≤ βϱ,

(ii) β∗̃γϱ ≤ βϱϱ∗̃γϱ,

(iii) (β∗̃γϱϱ)ϱϱ ≤ β∗̃γϱϱ,

(iv) (βϱ∗̃γϱ)ϱϱ ≤ βϱ∗̃γϱ,
(v) (β∗̃γ)ϱϱ ≤ βϱϱ∗̃γϱϱ.

Proof. (i). Let β ∈ X. Then, by (GE1), (6) and (20),

1 = (β∗̃0)∗̃(β∗̃0) ≤ β∗̃((β∗̃0)∗̃0) = β∗̃βϱϱ ≤ βϱϱϱ∗̃βϱ.

Hence βϱϱϱ∗̃βϱ = 1, which gives βϱϱϱ ≤ βϱ.

(ii). Let β, γ ∈ X. Then, by (16) and (20), β∗̃γϱ ≤ γ∗̃βϱ ≤ βϱϱ∗̃γϱ.

(iii). Let β, γ ∈ X. We can observe that (β∗̃γϱϱ)ϱ ≤ (β∗̃γϱϱ)ϱϱϱ. By (8), we get γϱ∗̃(β∗̃γϱϱ)ϱ ≤
γϱ∗̃(β∗̃γϱϱ)ϱϱϱ and so β∗̃(γϱ∗̃(β∗̃γϱϱ)ϱ) ≤ β∗̃(γϱ∗̃(β∗̃γϱϱ)ϱϱϱ). Hence, by (GE1),(6), (15) and
(16), we get

1 = (β∗̃γϱϱ)∗̃(β∗̃γϱϱ)

≤ β∗̃((β∗̃γϱϱ)∗̃γϱϱ)

≤ β∗̃(γϱ∗̃(β∗̃γϱϱ)ϱ)

≤ β∗̃(γϱ∗̃(β∗̃γϱϱ)ϱϱϱ)

≤ β∗̃((β∗̃γϱϱ)ϱϱ∗̃γϱϱ)

≤ (β∗̃γϱϱ)ϱϱ∗̃(β∗̃γϱϱ).

Thus (β∗̃γϱϱ)ϱϱ∗̃(β∗̃γϱϱ) = 1. Therefore (β∗̃γϱϱ)ϱϱ ≤ β∗̃γϱϱ.

(iv). By (16), we have βϱ∗̃γϱ ≤ γ∗̃βϱϱ. Hence, by (20), (iii) and (16), we get

(βϱ∗̃γϱ)ϱϱ ≤ (γ∗̃βϱϱ)ϱϱ ≤ γ∗̃βϱϱ ≤ βϱ∗̃γϱ.

(v). By (20), we get β∗̃γ ≤ βϱϱ∗̃γϱϱ. Hence (β∗̃γ)ϱϱ ≤ (βϱϱ∗̃γϱϱ)ϱϱ. Also, by (iv), we can
observe that (βϱϱ∗̃γϱϱ)ϱϱ ≤ βϱϱ∗̃γϱϱ. Hence (v) follows, since X is transitive.
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Proposition 3.2. Let G be a GE-ideal of X. Then we have

(i) For any β, γ ∈ X,βϱ = γϱ, β ∈ G imply γ ∈ G,

(ii) For any β ∈ X,β ∈ G if and only if βϱϱ ∈ G.

Proof. (i). Let β, γ ∈ X be such that βϱ = γϱ and β ∈ G. Then (βϱ∗̃γϱ)ϱ = 1ϱ = 0 ∈ G.
Hence γ ∈ G since G is a GE-ideal of X.

(ii). Let β ∈ X. Suppose β ∈ G. Then, by (GE1), (16) and (19),

1 = βϱϱ∗̃βϱϱ ≤ βϱ∗̃βϱϱϱ which implies that (βϱ∗̃βϱϱϱ)ϱ ≤ 1ϱ = 0 ∈ G.

By Proposition 2.14(i), we get (βϱ∗̃βϱϱϱ)ϱ ∈ G. Now β ∈ G and G is a GE-ideal of X, we have
βϱϱ ∈ G. Conversely, let βϱϱ ∈ G for any β ∈ X. Since β ≤ βϱϱ and βϱϱ ∈ G, by Proposition
2.14(i), we get β ∈ G.

Given a transitive bordered GE-algebra X, consider the next assertion:

(∀β, γ ∈ X)(βϱ∗̃γϱ ≤ γ∗̃β).(23)

Question 3.3. Does every transitive bordered GE-algebra X satisfy the condition (23)?

The answer to Question 3.3 is negative as seen in the following example.

Example 3.4. Consider a set X := {0, 1, 2, 3, 4, 5} with the binary operation “∗̃”, which is
given by Table 1. Then (X, ∗̃, 1) is a transitive bordered GE-algebra. But X does not satisfy

Table 1. Cayley table for the binary operation “∗̃”

∗̃ 0 1 2 3 4 5

0 1 1 1 1 1 1

1 0 1 2 3 4 5

2 0 1 1 3 5 5

3 0 1 2 1 4 4

4 0 1 2 3 1 1

5 0 1 2 3 1 1

(23), since
((2∗̃0)∗̃(4∗̃0))∗̃(4∗̃2) = (0∗̃0)∗̃2 = 1∗̃2 = 2 6= 1.

Theorem 3.5. If X satisfies (23), then G is a GE-ideal of X if and only if 0 ∈ G and
(β∗̃γ)ϱ ∈ G implies that β ∈ G for all γ ∈ G.
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Proof. Let X be a transitive bordered GE-algebra satisfying (23). Suppose G is a GE-ideal of
X. Then 0 ∈ G. Let (β∗̃γ)ϱ ∈ G and γ ∈ G. β∗̃γ ≤ γϱ∗̃βϱ implies that (γϱ∗̃βϱ)ϱ ≤ (β∗̃γ)ϱ

by (19). By Proposition 2.14(i), we have (γϱ∗̃βϱ)ϱ ∈ G. Since G is a GE-ideal of X and
γ ∈ G, we get β ∈ G. Conversely, assume, on the other hand, that the given conditions hold.
Let (βϱ∗̃γϱ)ϱ ∈ G and β ∈ G. Then βϱ∗̃γϱ ≤ γ∗̃β implies that (γ∗̃β)ϱ ≤ (βϱ∗̃γϱ)ϱ by (19).
Therefore ((γ∗̃β)ϱ∗̃(βϱ∗̃γϱ)ϱ)ϱ = 0 ∈ G. Since (βϱ∗̃γϱ)ϱ ∈ G, we get (γ∗̃β)ϱ ∈ G. Now β ∈ G

and (γ∗̃β)ϱ implies that γ ∈ G.

Theorem 3.6. Let G be a GE-ideal of X. Then (β∗̃γ)ϱ ∈ G, γ ∈ G ⇒ β ∈ G, ∀β, γ ∈ X if
and only if (α∗̃β)ϱ ≤ γ ⇒ α ∈ G, ∀β, γ ∈ G, ∀α ∈ X.

Proof. Suppose (β∗̃γ)ϱ ∈ G, γ ∈ G ⇒ β ∈ G, ∀β, γ ∈ X. Let β, γ ∈ G and α ∈ X be such
that (α∗̃β)ϱ ≤ γ. Then ((α∗̃β)ϱ∗̃γ)ϱ = 0 ∈ G and hence (α∗̃β)ϱ ∈ G. Therefore α ∈ G since
β ∈ G. Conversely assume that the condition holds. Let β, γ ∈ X be such that (β∗̃γ)ϱ ∈ G

and γ ∈ G. Since (β∗̃γ)ϱ ≤ (β∗̃γ)ϱ, it follows from the assumption that β ∈ G.

Theorem 3.7. Let ∅ 6= G ⊆ X. Then G is a GE-ideal of X if and only if it satisfies the
following property:

βϱ ≤ γϱ∗̃αϱ implies that α ∈ G

for all β, γ ∈ G and α ∈ X.

Proof. Assume that G is a GE-ideal of X. Let β, γ ∈ G and α ∈ X. Suppose βϱ ≤ γϱ∗̃αϱ.
Then βϱ ≤ γϱ∗̃αϱ ≤ (γϱ∗̃αϱ)ϱϱ and hence (βϱ∗̃(γϱ∗̃αϱ)ϱϱ)ϱ = 1ϱ = 0 ∈ G. Since β ∈ G and G

is a GE-ideal of X, we get (γϱ∗̃αϱ)ϱ ∈ G. Since γ ∈ G, we get α ∈ G.

Conversely, assume, on the other hand, that the G satisfies the provided condition. Since
G 6= ∅, choose β ∈ G. Clearly βϱ ≤ 1 = βϱ∗̃0ϱ. Then by the given condition, we get 0 ∈ G. Let
β, γ ∈ X be such that β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G. By Lemma 3.1(iv), we get (βϱ∗̃γϱ)ϱϱ ≤ βϱ∗̃γϱ.
Now, by (8), we get

(βϱ∗̃γϱ)∗̃γϱ ≤ (βϱ∗̃γϱ)ϱϱ∗̃γϱ.

Since G is transitive, we have

1 = (βϱ∗̃γϱ)∗̃(βϱ∗̃γϱ)

≤ βϱ∗̃((βϱ∗̃γϱ)∗̃γϱ)

≤ βϱ∗̃((βϱ∗̃γϱ)ϱϱ∗̃γϱ).

Hence, we get βϱ ≤ (βϱ∗̃γϱ)ϱϱ∗̃γϱ. Since β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G, we get γ ∈ G by the
assumption. Therefore G is a GE-ideal of X.
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Theorem 3.8. Let G be a non-empty subset of X. Then G is a GE-ideal of X if and only if
it satisfies the following condition for all β ∈ X:

for all µ, ν ∈ G, (µϱ∗̃(νϱ∗̃βϱ)ϱϱ)ϱ = 0 implies β ∈ G

Proof. Assume that G is a GE-ideal of X. Let µ, ν ∈ G and β ∈ X be such that
(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)ϱ = 0 ∈ G. Since µ ∈ G and G is a GE-ideal of X, we get that (νϱ∗̃βϱ)ϱ ∈ G.
Since ν ∈ G, we get that β ∈ G.

Conversely, assume, on the other hand, that the G satisfies the provided condition. For any
β ∈ G, we have

(βϱ∗̃(βϱ∗̃0ϱ)ϱϱ)ϱ = (βϱ∗̃(βϱ∗̃1)ϱϱ)ϱ = (βϱ∗̃1ϱϱ)ϱ = 1ϱ = 0.

Hence, by assumption we get 0 ∈ G. Let β, γ ∈ X. Suppose β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G.
We know that (βϱ∗̃γϱ)ϱϱ ≤ (βϱ∗̃γϱ)ϱϱ. Therefore (βϱ∗̃γϱ)ϱϱ∗̃(βϱ∗̃γϱ)ϱϱ = 1 and hence
((βϱ∗̃γϱ)ϱϱ∗̃(βϱ∗̃γϱ)ϱϱ)ϱ = 0. Since β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G, we get γ ∈ G by assumption.
Therefore G is a GE-ideal of X.

Theorem 3.9. A non-empty subset G of X is a GE-ideal of X if and only if it satisfies the
following properties:

(i) β ∈ G and γ ≤ β implies that γ ∈ G,

(ii) βϱϱ ∈ G implies that β ∈ G,

(iii) β ∈ G implies (γϱ∗̃βϱ)ϱ ∈ G,

(iv) µ, ν ∈ G implies ((µϱ∗̃(νϱ∗̃βϱ))∗̃βϱ)ϱ ∈ G

for all β, γ ∈ X.

Proof. Assume that G is a GE-ideal of X. Then (i) and (ii) follows by Proposition 2.14(i) and
Proposition 3.2(ii). Let β ∈ G and γ ∈ X. Clearly γϱ∗̃βϱ ≤ (γϱ∗̃βϱ)ϱϱ. Then, by (8), (19) and
(6), we get that (βϱ∗̃(γϱ∗̃βϱ)ϱϱ)ϱ ≤ (βϱ∗̃(γϱ∗̃βϱ))ϱ ≤ (γϱ∗̃(βϱ∗̃βϱ))ϱ = (γϱ∗̃1)ϱ = 1ϱ = 0 ∈ G.
Hence (βϱ∗̃(γϱ∗̃βϱ)ϱϱ)ϱ ∈ G by (i). Since β ∈ G, we get (γϱ∗̃βϱ)ϱ ∈ G. Thus (iii) follows. Let
µ, ν ∈ G. Then, by (15), (8) and (19), we have

νϱ∗̃βϱ ≤ (νϱ∗̃βϱ)ϱϱ

which implies that

µϱ∗̃(νϱ∗̃βϱ) ≤ µϱ∗̃(νϱ∗̃βϱ)ϱϱ

so that

(A) [(µϱ∗̃(νϱ∗̃βϱ))∗̃βϱ]ϱ ≤ [(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱ
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Now we show that [(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱ ∈ G. By Lemma 3.1(iv), we have

(νϱ∗̃βϱ)ϱϱ ≤ νϱ∗̃βϱ.

Then, by (15), (8) and (19), we have

µϱ∗̃(νϱ∗̃βϱ)ϱϱ ≤ µϱ∗̃(νϱ∗̃βϱ)

which implies that

[µϱ∗̃(νϱ∗̃βϱ)]∗̃βϱ ≤ (µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ ≤ [(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ.

So that

νϱ∗̃([µϱ∗̃(νϱ∗̃βϱ)]∗̃βϱ) ≤ νϱ∗̃[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ ≤ [νϱ∗̃[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ]ϱϱ

Therefore

1 = µϱ∗̃(νϱ∗̃([µϱ∗̃(νϱ∗̃βϱ)]∗̃βϱ)) ≤ µϱ∗̃([νϱ∗̃[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ]ϱϱ)

Hence
µϱ∗̃([νϱ∗̃[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ]ϱϱ) = 1

Thus
[µϱ∗̃([νϱ∗̃[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱϱ]ϱϱ)]ϱ = 0 ∈ G

Since µ, ν ∈ G, and G is a GE-ideal of X, we get

[(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱ ∈ G.

Since [(µϱ∗̃(νϱ∗̃βϱ)ϱϱ)∗̃βϱ]ϱ ∈ G and G is a GE-ideal of X, we get, from (A),

[(µϱ∗̃(νϱ∗̃βϱ))∗̃βϱ]ϱ ∈ G.

Hence (iv) follows.
Conversely, assume, on the other hand, that the G satisfies the provided conditions. Take

β = γ in (iii). Then we can observe that 0 ∈ G. Let β, γ ∈ X. Suppose that β ∈ G and
(βϱ∗̃γϱ)ϱ ∈ G. Then, by Lemma 3.1(iv), we have

(βϱ∗̃γϱ)ϱϱ ≤ βϱ∗̃γϱ

which implies that
(βϱ∗̃γϱ)∗̃γϱ ≤ (βϱ∗̃γϱ)ϱϱ∗̃γϱ

So that
1 = βϱ∗̃((βϱ∗̃γϱ)∗̃γϱ) ≤ βϱ∗̃((βϱ∗̃γϱ)ϱϱ∗̃γϱ).

Therefore
(βϱ∗̃((βϱ∗̃γϱ)ϱϱ∗̃γϱ))∗̃γϱ ≤ γϱ
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Hence

γϱϱ ≤ [(βϱ∗̃((βϱ∗̃γϱ)ϱϱ∗̃γϱ))∗̃γϱ]ϱ.

Since β ∈ G and (βϱ∗̃γϱ)ϱ ∈ G, by (iv), we obtain [(βϱ∗̃((βϱ∗̃γϱ)ϱϱ∗̃γϱ))∗̃γϱ]ϱ ∈ G. Hence, by
(i), γϱϱ ∈ G. Therefore, by (ii), γ ∈ G. Thus G is a GE-ideal of X.

4. Bordered GE-morphism theorems

Definition 4.1 ([17]). Let (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ) be GE-algebras. A mapping ξ : X → Y

is called a GE-morphism if it satisfies:

(∀β1, β2 ∈ X)(ξ(β1∗̃Xβ2) = ξ(β1)∗̃Y ξ(β2)).(24)

Note that every GE-morphism is order preversing (see [17]).

Definition 4.2. Let (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ) be bordered GE-algebras. A GE-morphism
ξ : X → Y is called a bordered GE-morphism if it satisfies:

ξ(0X) = 0Y .(25)

If a bordered GE-morphism ξ : X → Y is onto (resp., one-to-one), we say it is a bordered
GE-epimorphism (resp., bordered GE-isomorphism).

Example 4.3. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with binary opera-
tions “∗̃X” and “∗̃Y ”, respectively, which are given by the following Table 2. Then (X, ∗̃X , 1X)

Table 2. Cayley tables for the binary operations “∗̃X” and “∗̃Y ”

∗̃X 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 1 0

3 4 1 1 1 4

4 1 1 1 3 1

∗̃Y 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 0 4

3 1 1 1 1 4

4 3 1 1 3 1

and (Y, ∗̃Y , 1Y ) are bordered GE-algebras. Let ξ : X → Y be a mapping defined by

ξ(β) =

0 if β ∈ {0, 4},

1 if β ∈ {1, 2, 3}.

Then ξ is a bordered GE-morphism.
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It is clear that every bordered GE-morphism is a GE-morphism, but the converse is not
true in general as seen in the following example.

Example 4.4. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with binary opera-
tions “∗̃X” and “∗̃Y ”, respectively, which are given by the following Table 3. Then (X, ∗̃X , 1X)

Table 3. Cayley tables for the binary operations “∗̃X” and “∗̃Y ”

∗̃X 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 4 1 1 1 4

3 0 1 2 1 0

4 1 1 2 1 1

∗̃Y 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 3 4

3 1 1 2 1 4

4 1 1 2 1 1

and (Y, ∗̃Y , 1Y ) are bordered GE-algebras. Let ξ : X → Y be a mapping defined by

ξ(β) = 1 for all β ∈ X.

Then ξ is a GE-morphism. But ξ is not bordered GE-morphism, since ξ(0) = 1 6= 0.

For any bordered GE-morphism ξ : X → Y , define the dual kernel of the bordered GE-
morphism ξ as Dker(ξ) = {β ∈ X | ξ(β) = 0Y }. It is easy to check that Dker(ξ) = {0X}
whenever ξ is an injective bordered GE-morphism. If ξ is bordered, then

ξ(βϱ) = ξ(β∗̃X0X) = ξ(β)∗̃Y ξ(0X) = ξ(β)∗̃Y 0Y = (ξ(β))ϱ

for all β ∈ X.

Question 4.5. Let X and Y be bordered GE-algebras.

(i) If ξ : X → Y is a GE-morphism, then is (ξ(β))ϱϱ = ξ(β) for all β ∈ X?
(ii) If ξ : X → Y is a bordered GE-morphism, then is D ker(ξ) a GE-ideal of X?

The following example shows that the answer to Question 4.5 is negative.

Example 4.6. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, 3, 4} with binary opera-
tions “∗̃X” and “∗̃Y ”, respectively, which are given by the following Table 4. Then (X, ∗̃X , 1X)
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Table 4. Cayley tables for the binary operations “∗̃X” and “∗̃Y ”

∗̃X 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 3 4

3 1 1 1 1 4

4 0 1 2 3 1

∗̃Y 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 3 4

3 1 1 1 1 4

4 3 1 1 3 1

and (Y, ∗̃Y , 1Y ) are bordered GE-algebras. Let ξ : X → Y be a mapping defined by

ξ(β) =



0 if β = 0,

1 if β ∈ {1, 4},

2 if β = 2,

3 if β = 3.

Then ξ is a bordered GE-morphism and hence a GE-morphism. But Question 4.5(i) and
Question 4.5(ii) does not hold since

(ξ(2)∗̃X0)∗̃X0 = (2∗̃X0)∗̃X0 = 0∗̃X0 = 1 6= 2 = ξ(2).

Also, D ker(ξ) = {0X} and it is not a GE-ideal of X since

((0∗̃X0)∗̃X(3∗̃X0))∗̃X0 = (1∗̃X1)∗̃X0 = 1∗̃X0 = 0 ∈ D ker(ξ) but 3 /∈ D ker(ξ).

We provide conditions to ensure that the answer to Question 4.5(ii) is positive.

Theorem 4.7. Let X and Y be bordered GE-algebras. If ξ : X → Y is a bordered GE-
morphism satisfying

(∀β ∈ X)((ξ(β))ϱϱ = ξ(β)),

then the dual kernel, D ker(ξ) is a GE-ideal of X.

Proof. Clearly 0X ∈ Dker(ξ). Let β, γ ∈ X be such that β ∈ Dker(ξ) and (βϱ∗̃Xγϱ)ϱ ∈
Dker(ξ). Then ξ(β) = 0Y and

0Y = ξ((βϱ∗̃Xγϱ)ϱ) = (ξ(βϱ∗̃Xγϱ))ϱ = (ξ(βϱ)∗̃Y ξ(γϱ))ϱ

= ((ξ(β))ϱ∗̃Y (ξ(γ))ϱ)ϱ = ((0Y )
ϱ∗̃Y (ξ(γ))ϱ)ϱ

= ((1∗̃Y (ξ(γ))ϱ)ϱ = (ξ(γ))ϱ,ϱ = ξ(γ),

and so γ ∈ Dker(ξ). Therefore Dker(ξ) is a GE-ideal of X.
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Corollary 4.8. Let ξ : X → Y be a bordered GE-morphism of bordered GE-algebras X and
Y . If Y is duplex, then the dual kernel, D ker(ξ), is a GE-ideal of X.

Proposition 4.9. Let X and Y be two bordered GE-algebras and ξ : X → Y a bordered
GE-morphism. Then f−1(G) is a GE-ideal of X for any GE-ideal G of Y .

Proof. Let ξ : X → Y be a bordered GE-morphism. Suppose G is a GE-ideal of Y . Let β, γ ∈
X be such that β ∈ ξ−1(G) and (βϱ∗̃γϱ)ϱ ∈ ξ−1(G). Then ξ(β) ∈ G and (ξ(β)ϱ∗̃ξ(γ)ϱ)ϱ =

ξ((βϱ∗̃γϱ)ϱ) ∈ G. Since ξ(β) ∈ G and G is a GE-ideal, we get ξ(γ) ∈ G. Hence γ ∈ ξ−1(G).
Thus ξ−1(G) is a GE-ideal of X.

Let K be a GE-filter of a transitive GE-algebra X. Consider the set

RK := {(β, γ) ∈ X ×X | β∗̃γ ∈ K, γ∗̃β ∈ K}.(26)

It is routine to verify that RK is a congruence relation on X. For each δ ∈ X, let [δ] denote
the set of elements of X to which δ is related under RK , that is,

[δ] = {β ∈ X | (δ, β) ∈ RK}.

We call [δ] the equivalence class of δ in X under RK . The collection of all such equivalence
classes is denoted by X/RK , that is,

X/RK = {[δ] | δ ∈ X},

which is called the quotient set of X by RK . Then (X/RK , ∗̃K , [1]) is a GE-algebra where ∗̃K
is defined as follow:

(∀[β], [γ] ∈ X/RK)([β]∗̃K [γ] = [β∗̃γ]).

If X is bordered, then X/RK is also a bordered GE-algebra with the special element [0X ].

Proposition 4.10. For any GE-filter K of a transitive bordered GE-algebra X, the congruence
class [0]K is a GE-ideal of X.

Proof. Let K be a GE-filter of X. Since X is transitive, we have RK is a congruence relation
on X. Clearly 0 ∈ [0]K . Let β ∈ [0]K and (βϱ∗̃γϱ)ϱ ∈ [0]K . Hence βϱ = β∗̃X0 ∈ K and
(βϱ∗̃Xγϱ)ϱϱ = (βϱ∗̃Xγϱ)ϱ∗̃0 ∈ K. Since (βϱ∗̃Xγϱ)ϱϱ ≤ βϱ∗̃Xγϱ, we get βϱ∗̃Xγϱ ∈ K. Since
βϱ ∈ K, we get γ∗̃X0 = γϱ ∈ K. Since 0∗̃Xγ = 1 ∈ K, we get (γ, 0) ∈ RK . Hence γ ∈ [0]K .
Therefore [0]K is a GE-ideal of X.

Now, we introduce a congruence relation on bordered GE-algebras with respect to GE-
ideals and we derive some bordered GE-morphism theorems.
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Definition 4.11. Let G be a GE-ideal of a bordered GE-algebra X. For any β, γ ∈ X, define
a relation RG on X as follows:

(β, γ) ∈ RG if and only if (β∗̃γ)ϱ ∈ G and (γ∗̃β)ϱ ∈ G.

Theorem 4.12. If X is a transitive bordered GE-algebra and G a GE-ideal of X, then RG is
a congruence relation on X. Moreover RG is a unique congruence such that [0]G = G, where
[0]G is the equivalence class of 0 with respect to RG.

Proof. Clearly RG is reflexive and symmetric. Let (β, γ), (γ, α) ∈ RG. Then (β∗̃γ)ϱ ∈
G, (γ∗̃β)ϱ ∈ G and (γ∗̃α)ϱ ∈ G, (α∗̃γ)ϱ ∈ G. By (8), we get

γ∗̃α ≤ (β∗̃γ)∗̃(β∗̃α) ≤ (β∗̃γ)ϱϱ∗̃(β∗̃α)ϱϱ.

Hence ((β∗̃γ)ϱϱ∗̃(β∗̃α)ϱϱ)ϱ ≤ (γ∗̃α)ϱ. Since (γ∗̃α)ϱ ∈ G, we get that ((β∗̃γ)ϱϱ∗̃(β∗̃α)ϱϱ)ϱ ∈ G.
Since (β∗̃γ)ϱ ∈ G, we get (β∗̃α)ϱ ∈ G. Similarly, we can obtain (α∗̃β)ϱ ∈ G. Hence (β, α) ∈
RG. Therefore RG is an equivalence relation on X. Let (β, γ) ∈ RG and (µ, ν) ∈ RG. Then
(β∗̃γ)ϱ ∈ G, (γ∗̃β)ϱ ∈ G, (µ∗̃ν)ϱ ∈ G and (ν∗̃µ)ϱ ∈ G. Since X is transitive, we get β∗̃γ ≤
(µ∗̃β)∗̃(µ∗̃γ) and so ((µ∗̃β)∗̃(µ∗̃γ))ϱ ≤ (β∗̃γ)ϱ. Since (β∗̃γ)ϱ ∈ G, we get ((µ∗̃β)∗̃(µ∗̃γ))ϱ ∈ G.
Similarly, we can get ((µ∗̃γ)∗̃(µ∗̃β))ϱ ∈ G since (γ∗̃β)ϱ ∈ G. Hence (µ∗̃β, µ∗̃γ) ∈ RG. Also,
ν∗̃γ ≤ (µ∗̃ν)∗̃(µ∗̃γ) since X is transitive. Thus

µ∗̃ν ≤ (ν∗̃γ)∗̃(µ∗̃γ) ≤ ((ν∗̃γ)∗̃(µ∗̃γ))ϱϱ

Hence ((ν∗̃γ)∗̃(µ∗̃γ))ϱ ≤ (µ∗̃ν)ϱ. Since (µ∗̃ν)ϱ ∈ G, we get ((ν∗̃γ)∗̃(µ∗̃γ))ϱ ∈ G. Similarly,
we get ((µ∗̃γ)∗̃(ν∗̃γ))ϱ ∈ G since (ν∗̃µ)ϱ ∈ G. Thus (µ∗̃γ, ν∗̃γ) ∈ RG. Therefore RG is a
congruence on X. Now, let β ∈ [0]G. Then βϱϱ = (β∗̃0)ϱ ∈ G. Since β ≤ βϱϱ, we get β ∈ G.
Therefore [0]G ⊆ G. Again, let β ∈ G. Then (β∗̃0)ϱ = βϱϱ ∈ G. Clearly (0∗̃β)ϱ = 1ϱ = 0 ∈ G.
Hence (β, 0) ∈ RG, which implies β ∈ [0]G. Thus G ⊆ [0]G. Therefore [0]G = G.

We can observe that X/RG = {[β]G | β ∈ X}(where [β]G is the equivalence class of β

with respect to RG) is a bordered GE-algebra in which the binary operation ∗̃G is defined as
[β]G∗̃G[γ]G = [β∗̃Xγ]G for β, γ ∈ X. Moreover, X/RG contains the element [0]G. For any
GE-ideal G of a transitive bordered GE-algebra X, we can get the bordered GE-epimorphism
χ : X → X/RG given by χ(β) = [β]G.

Theorem 4.13. Let G,M be two GE-ideals of a transitive bordered GE-algebra X. Then

G ∨M = {β ∈ X | γϱ∗̃(δϱ∗̃βϱ) = 1 for some γ ∈ G and δ ∈ M }

is the smallest GE-ideal of X containing G and M .
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Proof. Clearly, 0 ∈ G ∨ M . Let β ∈ G ∨ M and (βϱ∗̃γϱ)ϱ ∈ G ∨ M . Then there exists
γ, ν ∈ G and δ, τ ∈ M such that γϱ∗̃(δϱ∗̃βϱ) = 1 and νϱ∗̃(τϱ∗̃(βϱ∗̃γϱ)ϱϱ) = 1. Then by Lemma
3.1(iv),(8) and (6), we get

1 = νϱ∗̃(τϱ∗̃(βϱ∗̃γϱ)ϱϱ) ≤ νϱ∗̃(τϱ∗̃(βϱ∗̃γϱ)) ≤ βϱ∗̃(νϱ∗̃(τϱ∗̃γϱ)).

Hence βϱ ≤ νϱ∗̃(τϱ∗̃γϱ). Since X is transitive, we get

1 = γϱ∗̃(δϱ∗̃βϱ) ≤ γϱ∗̃(δϱ∗̃(νϱ∗̃(τϱ∗̃γϱ))) ≤ γϱ∗̃(νϱ∗̃(δϱ∗̃(τϱ∗̃γϱ))).

Hence γϱ∗̃(νϱ∗̃(δϱ∗̃(τϱ∗̃γϱ))) = 1. Thus by Lemma 3.1(iv), (8) and (6) we get

(γϱ∗̃(νϱ∗̃(δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱϱ)ϱϱ)ϱ ≤ (γϱ∗̃(νϱ∗̃(δϱ∗̃(τϱ∗̃γϱ))))ϱ

= 1ϱ

= 0 ∈ G

Hence (γϱ∗̃(νϱ∗̃(δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱϱ)ϱϱ)ϱ ∈ G where γ, ν ∈ G and δ, τ ∈ M . Since γ, ν ∈ G, we
get (δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱ ∈ G. Put µ = (δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱ. Then µϱ = (δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱϱ. By Lemma
3.1(iv), (8) and (6), we have

µϱ = (δϱ∗̃(τϱ∗̃γϱ)ϱϱ)ϱϱ ≤ δϱ∗̃(τϱ∗̃γϱ)ϱϱ ≤ δϱ∗̃(τϱ∗̃γϱ).

Hence 1 = µϱ∗̃(δϱ∗̃(τϱ∗̃γϱ)) ≤ δϱ∗̃(τϱ∗̃(µϱ∗̃γϱ)). Thus, we get

(δϱ∗̃(τϱ∗̃(µϱ∗̃γϱ)))ϱ = 0 ∈ M.

Hence (δϱ∗̃(τϱ∗̃(µϱ∗̃γϱ)ϱϱ)ϱϱ)ϱ ≤ (δϱ∗̃(τϱ∗̃(µϱ∗̃γϱ)))ϱ ∈ M . Since δ, τ ∈ M , we get (µϱ∗̃γϱ)ϱ ∈
M . Put ν = (µϱ∗̃γϱ)ϱ. Then νϱ = (µϱ∗̃γϱ)ϱϱ ≤ µϱ∗̃γϱ and hence

1 = νϱ∗̃νϱ ≤ νϱ∗̃(µϱ∗̃γϱ) ≤ µϱ∗̃(νϱ∗̃γϱ)

Since µ ∈ G, ν ∈ M , we get γ ∈ G ∨ M . Therefore G ∨ M is a GE-ideal of X. Let β ∈ G.
Clearly βϱ∗̃(0ϱ∗̃βϱ) = βϱ∗̃βϱ = 1. Since 0 ∈ M , we get β ∈ G ∨ M . Hence G ⊆ G ∨ M .
Similarly, we get M ⊆ G ∨M .

Let K be any GE-ideal of X such that G ⊆ K and M ⊆ K. Let β ∈ G ∨M . Then there
exists γ ∈ G ⊆ K and δ ∈ M ⊆ K such that γϱ∗̃(δϱ∗̃βϱ) = 1. Hence γϱ∗̃(δϱ∗̃βϱ)ϱϱ = 1, which
implies (γϱ∗̃(δϱ∗̃βϱ)ϱϱ)ϱ = 0 ∈ K. Since γ ∈ K, we get (δϱ∗̃βϱ)ϱ ∈ K. Since δ ∈ K, we get
β ∈ K. Hence G ∨M ⊆ K. Therefore G ∨M is the smallest GE-ideal which contains both G

and M .

The following example illustrates Theorem 4.13.
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Table 5. Cayley tables for the binary operation “∗̃”

∗̃ 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 3 1 1 3 3

3 2 1 2 1 1

4 2 1 2 1 1

Example 4.14. Consider the set X = {0, 1, 2, 3, 4} with binary operation “∗̃” which is given
by the following Table 5. Then (X, ∗̃, 1) is a transitive bordered GE-algebra. Here we can
observe that M1 = {0},M2 = {0, 2},M3 = {0, 3, 4}, and X are the only GE-ideals of X and
M1 ∨M2 = M2 is the smallest GE-ideal of X containing M1 and M2.

Since the intersection of GE-ideals is again a GE-ideal, the following is direct:

Corollary 4.15. For any transitive bordered GE-algebra X, the set I(X) of all GE-ideals of
X forms a complete lattice.

Theorem 4.16. Let G and M be two GE-ideals of a transitive bordered GE-algebra X. Then
the mapping ξ : X → (X/RG) × (X/RM ) defined by ξ(β) = ([β]G, [β]M ) for all β ∈ X is a
GE-morphism. Moreover, the following hold:

(i) If ξ is injective, then G ∩M = {0},

(ii) If ξ is surjective, then G ∨M = X.

Proof. Clearly ξ is well-defined. Let β, γ ∈ X. Then

ξ(β∗̃γ) = ([β∗̃γ]G, [β∗̃γ]M ) = ([β]G∗̃G[γ]G, [β]M ∗̃M [γ]M ) = ([β]G, [β]M )∗̃([γ]G, [γ]M ) = ξ(β)∗̃ξ(γ).

Therefore ξ is a GE-morphism.

(i). Suppose ξ is injective. Then clearly DKer (ξ) = {0}. Now

β ∈ DKer(ξ) ⇔ ξ(β) = 0 = ([0]G, [0]M )

⇔ ([β]G, [β]M ) = ([0]G, [0]M )

⇔ [β]G = [0]G and [β]M = [0]M

⇔ βϱϱ ∈ G and βϱϱ ∈ M

⇔ β ∈ G and β ∈ M since β ≤ βϱϱ

⇔ β ∈ G ∩M
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Thus DKer(ξ) = G ∩M . Therefore G ∩M = {0} whenever ξ is injective.

(ii). Assume that ξ is surjective. Clearly ([0]G, [1]M ) ∈ (X/G)× (X/M). Since ξ is surjective,
there exists β ∈ X such that ξ(β) = ([0]G, [1]M ). Hence

ξ(β) = ([0]G, [1]M ) ⇔ ([β]G, [β]M ) = ([0]G, [1]M )

⇔ [β]G = [0]G and [β]M = [1]M

⇔ βϱϱ ∈ G and βϱ ∈ M

⇔ β ∈ G and βϱ ∈ M

Clearly βϱ∗̃(βϱϱ∗̃1ϱ) = βϱ∗̃βϱϱϱ = 1. Since β ∈ G and βϱ ∈ M , it imply that 1 ∈ G ∨ M .
Therefore G ∨M = X whenever ξ is surjective.

Theorem 4.17. Let (X, ∗̃X , 1X), (Y, ∗̃Y , 1Y ) and (Z, ∗̃Z , 1Z) be bordered GE-algebras. If
ξ : X → Y and χ : Y → Z are bordered GE-morphisms, then

χ ◦ ξ : X → Z, β 7→ χ(ξ(β))

is a bordered GE-morphism.

Proof. Straightforward.

Theorem 4.18. (Fundamental bordered GE-morphism theorem) Given two bordered GE-
algebras (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ) in which (X, ∗̃X , 1X) is transitive and (Y, ∗̃Y , 1Y ) is duplex
and antisymmetric, let ξ : X → Y be a bordered GE-morphism, G a GE-ideal of X and φ the
canonical bordered GE-epimorphism X → X/RG. If G is a subset of Dker(ξ) then there exists
a unique bordered GE-morphism ξ̃ : X/RG → Y such that the diagram:

(27)
X Y

X/RG X/RG

φ

ξ

ξ̃

is commutative. Moreover, ξ̃ is a bordered GE-isomorphism if and only if ξ is a bordered
GE-epimorphism and G = Dker(ξ).

Proof. Let G be a subset of Dker(ξ) and define

ξ̃ : X/RG → Y, [β]G 7→ ξ(β).

Let [β]G, [γ]G ∈ X/RG be such that [β]G = [γ]G. Then (β, γ) ∈ RG, and so (β∗̃Xγ)ϱ ∈ G ⊆
Dker(ξ) and (γ∗̃Xβ)ϱ ∈ G ⊆ Dker(ξ). Thus

ξ((β∗̃Xγ)ϱ) = 0Y ⇒ (ξ(β∗̃Xγ))ϱ = 0Y ⇒ (ξ(β)∗̃Y ξ(γ))ϱ = 0Y ⇒ ξ(β)∗̃Y ξ(γ) = 1Y
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and

ξ((γ∗̃Xβ)ϱ) = 0Y ⇒ (ξ(γ∗̃Xβ))ϱ = 0Y ⇒ (ξ(γ)∗̃Y ξ(β))ϱ = 0Y ⇒ ξ(γ)∗̃Y ξ(β) = 1Y .

Since (Y, ∗̃Y , 1Y ) is antisymmetric, we have

ξ̃([β]G) = ξ(β) = ξ(γ) = ξ̃([γ]G).

Hence ξ̃ is well-defined. For any β, γ ∈ X, we can observe that

ξ̃([β]G∗̃G[γ]G) = ξ̃([β∗̃Xγ]G) = ξ(β∗̃Xγ) = ξ(β)∗̃Y ξ(γ) = ξ̃([β]G)∗̃Y ξ̃([γ]G),

ξ̃([0X ]G) = ξ(0X) = 0Y .

which shows that ξ̃ is a bordered GE-morphism. Since

(ξ̃ ◦ φ)(β) = ξ̃(φ(β)) = ξ̃([β]G) = ξ(β)

for all β ∈ X, we have ξ̃◦φ = ξ, that is, the diagram in (27) is commutative. Let χ̃ : X/RG → Y

be a GE-morphism such that χ̃ ◦ φ = ξ. Then

χ̃([x]G) = χ̃(φ(β)) = (χ̃ ◦ φ)(β) = ξ(β) = (ξ̃ ◦ φ)(β) = ξ̃(φ(β)) = ξ̃([x]G)

for all [β]G ∈ X/RG. Hence χ̃ = ξ̃, which means that ξ̃ is unique. Suppose ξ̃ is a bordered
GE-isomorphism. For every γ ∈ Y , there exists [β]G ∈ X/RG such that ξ̃([β]) = γ. Thus
ξ(β) = ξ̃([β]G) = γ, and so ξ is a bordered GE-epimorphism. Let β ∈ D ker(ξ). Then
ξ̃([β]) = ξ(β) = 0Y = ξ̃([0]G) and hence [β]G = [0]G. Therefore β ≤ βϱϱ = (β∗̃X0)ϱ ∈ G and
hence β ∈ G. Hence G = D ker(ξ). Conversely, assume that ξ is a bordered GE-epimorphism
and G = D ker(ξ). Let [β]G, [γ]G ∈ X/RG be such that ξ̃([β]G) = ξ̃([γ]G). Then ξ(β) = ξ(γ),
and

ξ(β∗̃Xγ) = ξ(β)∗̃Y ξ(γ) = ξ(γ)∗̃Y ξ(γ) = 1Y ⇒ (ξ(β∗̃Xγ))ϱ = 0Y ⇒ ξ((β∗̃Xγ)ϱ) = 0Y .

Hence (β∗̃Xγ)ϱ ∈ D ker(ξ) = G. Similarly, (γ∗̃Xβ)ϱ ∈ G. Therefore (β, γ) ∈ RG and [β]G =

[γ]G. Hence ξ̃ is injective. Let γ ∈ Y. Then there exists β ∈ X such that ξ(β) = γ. Thus
γ = ξ(β) = ξ̃([β]G), so ξ̃ is surjective. Therefore ξ̃ is a bordered GE-isomorphism.

Theorem 4.19. Given three bordered GE-algebras (X, ∗̃X , 1X), (Y, ∗̃Y , 1Y ) and (Z, ∗̃Z , 1Z) in
which (Z, ∗̃Z , 1Z) is duplex and antisymmetric, let ξ : X → Y and χ : X → Z be bordered
GE-morphisms. If Dker(ξ) ⊆ Dker(χ) and ξ is a bordered GE-epimorphism, then there exists
a unique bordered GE-morphism ϱ : Y → Z such that the diagram

(28)
X Y

Z

ξ

χ
ϱ
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is commutative.

Proof. Assume that ξ is a bordered GE-epimorphism and Dker(ξ) ⊆ Dker(χ). For every
γ ∈ Y , there exists β ∈ X such that ξ(β) = γ. For the element β ∈ X, put α := χ(β) and
define

ϱ : Y → Z, γ 7→ α = χ(β).

We first show that ϱ is well-defined. Let γ1, γ2 ∈ Y be such that γ1 = γ2, γ1 = ξ(β1)

and γ2 = ξ(β2) for some β1, β2 ∈ X. Then ξ(β1∗̃Xβ2) = ξ(β1)∗̃Y ξ(β2) = 1Y and hence
ξ((β1∗̃Xβ2)

ϱ) = (ξ(β1∗̃Xβ2))
ϱ = 0Y . Therefore (β1∗̃Xβ2)

ϱ ∈ ker(ξ) ⊆ ker(χ). Thus 0Z =

χ((β1∗̃Xβ2)
ϱ) = (χ(β1)∗̃Zχ(β2))ϱ ⇒ 1Z = χ(β1)∗̃Zχ(β2) since Z is duplex. The similarly way

induces χ(β2)∗̃Zχ(β1) = 1Z , and thus χ(β1) = χ(β2) Since Z is antisymmetric. Hence ϱ is
well-defined. Also, we have χ(β) = α = ϱ(γ) = ϱ(ξ(β)) for all β ∈ X, which shows that the
diagram in (28) is commutative. Let γ1, γ2 ∈ Y . For every β1, β2 ∈ X with γ1 = ξ(β1) and
γ2 = ξ(β2), we have

ϱ(γ1∗̃Y γ2) = ϱ(ξ(β1)∗̃Y ξ(β2))

= ϱ(ξ(β1∗̃Xβ2)) = χ(β1∗̃Xβ2)

= χ(β1)∗̃Zχ(β2) = ϱ(ξ(β1))∗̃Zϱ(ξ(β2))

= ϱ(γ1)∗̃Zϱ(γ2).

We know that ξ(0X) = 0Y ∈ Y . Hence 0X ∈ D ker(ξ) ⊆ D ker(χ). Therefore χ(0X) = 0Z .
Now ϱ(0Y ) = ϱ(ξ(0X)) = ϱ ◦ ξ(0X) = χ(0X) = 0Z . Hence ϱ is a bordered GE-morphism. The
uniqueness of ϱ is straightforward since ξ is a bordered GE-epimorphism.

Theorem 4.20. Given two bordered GE-algebras (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ), let ξ : X → Y

be a bordered GE-epimorphism. If (X, ∗̃X , 1X) is transitive and (Y, ∗̃Y , 1Y ) is duplex and
antisymmetric, then X/RDker(ξ) is bordered GE-isomorphic to Y .

Proof. Note from Corollary 4.8 that Dker(ξ) is a GE-ideal of X, and so X/RDker(ξ) is a
bordered GE-algebra with the special element [0X ]D ker(ξ). Define a mapping

χ : X/RDker(ξ) → Y, [β]Dker(ξ) 7→ ξ(β).

If [β1]Dker(ξ) = [β2]Dker(ξ) in X/RDker(ξ), then (β1∗̃Xβ2)
ϱ ∈ Dker(ξ) and (β2∗̃Xβ1)

ϱ ∈ Dker(ξ).
Hence

ξ((β1∗̃Xβ2)
ϱ) = 0Y ⇒ (ξ(β1∗̃Xβ2))

ϱ = 0Y ⇒ (ξ(β1)∗̃Y ξ(β2))ϱ = 0Y ⇒ ξ(β1)∗̃Y ξ(β2) = 1Y
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and

ξ((β2∗̃Xβ1)
ϱ) = 0Y ⇒ (ξ(β2∗̃Xβ1))

ϱ = 0Y ⇒ (ξ(β2)∗̃Y ξ(β1))ϱ = 0Y ⇒ ξ(β2)∗̃Y ξ(β1) = 1Y ,

and thus χ([β1]Dker(ξ)) = ξ(β1) = ξ(β2) = χ([β2]Dker(ξ)). This shows that χ is a well-defined
mapping. For each γ ∈ Y , there exists β ∈ X such that ξ(β) = γ since ξ is onto. Thus
χ([β]Dker(ξ)) = ξ(β) = γ which shows that χ is onto. Suppose that χ([β]Dker(ξ)) = χ([γ]Dker(ξ))

in X/RDker(ξ). Then ξ(β) = ξ(γ) and hence ξ(β)∗̃Xξ(γ) = 1Y which implies that ξ((β∗̃Xγ)ϱ) =

0Y . Hence (β∗̃Xγ)ϱ ∈ Dker(ξ) and similarly (γ∗̃Xβ)ϱ ∈ Dker(ξ). Therefore (β, γ) ∈ RD ker(ξ).
Hence [β]Dker(ξ) = [γ]Dker(ξ). Hence χ is injective. Let [β]Dker(ξ) ∈ X/RDker(ξ) and [γ]Dker(ξ) ∈
X/RDker(ξ). Then

χ([β]Dker(ξ)∗̃Dker(ξ)[γ]Dker(ξ)) = χ([β∗̃Xγ]Dker(ξ))

= ξ(β∗̃Xγ)

= ξ(β)∗̃Y ξ(γ)

= χ([β]Dker(ξ))∗̃Y χ([γ]Dker(ξ)).

Also, χ([0X ]D ker(ξ)) = ξ(0X) = 0Y . Thus X/RD ker(ξ) is bordered GE-isomorphic to Y .

Theorem 4.21. Given two transitive bordered GE-algebras (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ), let
ξ : X → Y be a bordered GE-epimorphism. If (Y, ∗̃Y , 1Y ) is antisymmetric and K is a GE-ideal
of Y , then X/Rξ−1(K) is bordered GE-isomorphic to Y/RK .

Proof. We know that ξ−1(K) is a GE-ideal of X. Hence we can make the quotient GE-algebra
X/Rξ−1(K). Let π : Y → Y/RK be the canonical GE-morphism. Then χ := π ◦ ξ : X →
Y/RK is a GE-epimorphism and Y/RK is antisymmetric since Y is antisymmetric. For any
β ∈ X, we get χ(β) = (π ◦ ξ)(β) = π(ξ(β)) = [ξ(β)]K where [ξ(β)]K is the equivalence
class containing ξ(β) in Y/RK . If β ∈ ξ−1(K), then ξ(β) ∈ K and so [ξ(β)]K = K which
says χ(β) = K. Hence β ∈ D ker(χ), and thus ξ−1(K) ⊆ D ker(χ). If β ∈ D ker(χ), then
K = χ(β) = [ξ(β)]K . Hence ξ(β) ∈ K, i.e., β ∈ ξ−1(K), and so D ker(χ) ⊆ ξ−1(K). Therefore
D ker(χ) = ξ−1(K). It follows from Theorem 4.20 that there exists a bijective bordered GE-
morphism ξ : X/Rξ−1(K) → Y/RK , and so X/Rξ−1(K) is bordered GE-isomorphic to Y/RK .

Proposition 4.22. Given two bordered GE-algebras (X, ∗̃X , 1X) and (Y, ∗̃Y , 1Y ), let ξ : X →
Y be a bordered GE-epimorphism. If G is a GE-ideal of X which contains Dker(ξ), then
ξ−1(ξ(G)) = G.
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Proof. It is clear that G ⊆ ξ−1(ξ(G)). If β ∈ ξ−1(ξ(G)), then ξ(β) ∈ ξ(G) and hence there
exists γ ∈ G such that ξ(β) = ξ(γ). Hence

ξ(β∗̃Xγ) = ξ(β)∗̃Y ξ(γ) = 1Y ⇒ (ξ(β∗̃Xγ))ϱ = 0Y ⇒ ξ((β∗̃Xγ)ϱ) = 0Y .

which implies that (β∗̃Xγ)ϱ ∈ D ker(ξ) ⊆ G. Thus β ∈ G since G is a GE-ideal of X. Therefore
ξ−1(ξ(G)) = G.

5. Conclusion

In this paper, we have studied the properties of GE-ideals of a transitive bordered GE-
algebra and given the characterization of GE-ideals. We have observed that the set of all
GE-ideals of a transitive bordered GE-algebra forms a complete lattice. We have introduced
the notion of bordered GE-morphism and established fundamental bordered GE-morphism
theorem. We have introduced a congruence relation on a bordered GE-algebra with respect
to GE-ideal and derived some bordered GE-morphism theorems.
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