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ABSTRACT. In this paper, the properties of GE-ideals of transitive bordered GE-algebra are
studied and characterizations of GE-ideals are given. We have observed that the set of all GE-
ideals of a transitive bordered GE-algebra forms a complete lattice. The notion of bordered
GE-morphism is introduced and established fundamental bordered GE-morphism theorem.
A congruence relation on a bordered GE-algebra with respect to GE-ideal is introduced and

some bordered GE-morphism theorems are derived.

1. INTRODUCTION

BCK-algebras (see [H, H]) were introduced by Y. Imai and K. Iséki in 1966 as the algebraic
semantics for a non-classical logic possessing only implication. Since then, the generalized
concepts of BCK-algebras have been studied by various scholars. Hilbert algebras were intro-

duced by L. Henkin and T. Skolem in the fifties for investigations in intuitionistic and other
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non-classical logics. A. Diego established that Hilbert algebras form a locally finite variety (see
[b]). Later several researchers extended the theory on Hilbert algebras (see [3, 1, 6, 9, L0]).
The notion of BE-algebra was introduced by H.S. Kim and Y.H. Kim as a generalization of
a dual BCK-algebra (see [12]). A. Rezaei et al. discussed relations between Hilbert algebras
and BE-algebras (see [[13, [16]). In the study of algebraic structures, the generalization process
is also an important topic. As a generalization of Hilbert algebras, R.K. Bandaru et al. in-
troduced the notion of GE-algebras, and investigated several properties (see [[1]). A. Rezaei et
al. introduced the concept of prominent GE-filters in GE-algebras and discussed its properties
(see [17]). R.K. Bandaru et al. introduced the concept of bordered GE-algebra and investi-
gated its properties (see [2]). Later, M. A. Ozturk et al. introduced the concept of Strong
GE-filters, GE-ideals of bordered GE-algebras and investigated its properties (see [14]). S. Z.
Song et al. introduced the concept of Imploring GE-filters of GE-algebras and discussed its
properties (see [18]). The isomorphism theorems play an important role in a general logical
algebra, which were studied by several researches. Jun et al. derived isomorphism theorems
by using Chinese Remainder Theorem in BCl-algebras (see [11]). J. K. Park et al. derived
isomorphism theorems of IS-algebras (see [15]).

In this paper, we study the properties of GE-ideals of a transitive bordered GE-algebra and
show that the set of all GE-ideals of a transitive bordered GE-algebra is a complete lattice.
We introduce the notion of bordered GE-morphism and establish fundamental bordered GE-
morphism theorem. We introduce a congruence relation on a bordered GE-algebra with respect

to GE-ideal and derive some bordered GE-isomorphism theorems.

2. Preliminaries

Definition 2.1 ([l]). A GE-algebra is a non-empty set X with a constant 1 and a binary
operation x satisfying the following axioms:

(GE1) pxp =1,

(GE2) Tk = p,

(GE3) px(vx1) = px(v(uxT))
for all p,v,7 € X.

In a GE-algebra X, a binary relation “<” is defined by
(1) (VByeX)(B<y & Bry=1).

In general, the dual BCK/BCl-algebra satisfies the transitivity, but GE-algebra does not.

Therefore, it is necessary to define transitivity for the research of GE-algebra.

Definition 2.2 ([1]). A GE-algebra X is said to be
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o transitive if it satisfies:

(2) (VB,7,a € X) (Bxy < (axB)*(ax7)) -
o antisymmetric if the binary relation “<” is antisymmetric.

Definition 2.3 ([2]). If a GE-algebra X has a special element, say 0, that satisfies 0 < g for
all g € X, we call X the bordered GE-algebra.

For every element £ of a bordered GE-algebra X, we denote Sx0 by 42, and (82)¢ is denoted
by (£9¢°.

Definition 2.4 ([2]). If a bordered GE-algebra X satisfies the condition (E), we say that X

is a transitive bordered GE-algebra.

Definition 2.5 ([2]). A bordered GE-algebra X is said to be antisymmetric if the binary

operation “<” is antisymmetric.

Proposition 2.6 ([l]). Every GE-algebra X satisfies the following items.

(3) (Vi€ X) (¥l =1).

(4) (Vv € X) (p(prv) = pxv).

(5) (Vu,v € X) (n < vp).

(6) (Y, v, 7 € X) (U (v3T) < vR(1FT)).
(7) (VpeX)(l<sp = p=1).

If X is transitive, then

(8) Vu,v, 7€ X) (0 <v = 7% < THv, v¥T < UkT).

Lemma 2.7 ([l]). In a GE-algebra X, the following facts are equivalent each other.

(9) (V87,0 € X) (By < (akB)x(ak7)) -

(10) (VB,7, € X) (B%y < (v¥a)*(Bxa)) -

Definition 2.8 ([1]). A subset K of a GE-algebra X is called a GE-filter of X if it satisfies:
(11) leK,

(12) (VByeX)(fxye K, e K = yeK).

Lemma 2.9 ([l]). In a GE-algebra X, every GE-filter K of X satisfies:

(13) (VB,yeX)(B<v, BEK = y€EK).
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Proposition 2.10 ([2]). In a bordered GE-algebra X, the following assertions are valid.

(14) 12=0, 0°=1.

(15) (V6 e X) (B <p%).

(16) (VB,v € X) (B+y® < yxB?).

(17) (VB e X)(B<1® & v <B%).
(18) (V8,7 € X) (Bxy¢ = B*(v%p°)) .

If X is a transitive bordered GFE-algebra, then
(19) (VB,yeX)(B<y =72 <89).
(20) (VB,v € X) (Bxy < v%%B7) .

If X is an antisymmetric bordered GE-algebra, then

(21) (V8,7 € X) (B¥y? = v*B9) .

If X is a transitive and antisymmetric bordered GE-algebra, then

(22) (VB € X) (B = p°).

Definition 2.11 ([2]). By a duplex bordered element in a bordered GE-algebra X, we mean
an element § of X which satisfies 52¢ = 3.

The set of all duplex bordered elements of a bordered GE-algebra X is denoted by 0%(X),
and is called the duplex bordered set of X. It is clear that 0,1 € 0*(X).

Definition 2.12 ([2]). A bordered GE-algebra X is said to be duplex if every element of X is
a duplex bordered element, that is, X = 0%(X).

Definition 2.13 ([14]). Let X be a bordered GE-algebra. If a subset G of X meets the
following conditions for all 8,y € X, it is termed a GE-ideal of X:

(i) 0 € G,

(ii) 8 € G and (89%~2)? € G imply that v € G.
Proposition 2.14 ([14]). Let G be a GE-ideal of X. Then we have

(i) For any B,y € X,8 € G and v < 8 imply v € G.
(i) For any B,y € X, (f*x7)? € G, yeG = Be€G.
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3. CHARACTERIZATIONS OF GE-IDEALS

In this section, we study properties of GE-ideals of a transitive bordered GE-algebra and
derive characterization theorems of GE-ideals. Throughout this section, X means a transitive

bordered GE-algebra (X, *, 1) unless otherwise mentioned.

Lemma 3.1. For any 8,7 € X, we have

(Z) IBQQQ S /897

(i1) Bxvye < BOxy©,
(i) (Bxy2)2 < Brryee,
(iv) (Be¥v2)ee < Bo*y2,
(v) (B¥y)28 < Booxryee.

Proof. (i). Let § € X. Then, by (GE1), (B) and (@),
1 = (B*0)%(8%0) < B*((fF0)%0) = fxB < Book[2,

Hence (3999%3¢ = 1, which gives 3992 < 3¢.

(ii). Let 8,7 € X. Then, by (16) and (Rd), B7ye < 1582 < eeFre.

(iii). Let 8,y € X. We can observe that (Sxv99)¢ < (S%v22)222. By (E), we get yox([5%y22)¢ <
V5 (GFye0)202 and so FE(yE(8712)2) < FH(y7H(8%92)22). Hence, by (GE1),({), (13) and
(1d). we get

1 = (Bxy2)x(B*%)
< BER((BFy0)¥y%)
< BE(vR(Bx?9)?)
< Br(yox(B¥y22)%%)
< BE((BFy0) %Ry 0)
< (BFy®)0%x(BRy%0).

Thus (8%722)2%(f*v2¢) = 1. Therefore (S*722)22 < [Fxy99.
(iv). By (1d), we have 8%5y¢ < 4322, Hence, by (R0), (iii) and (1d), we get

(BQ;,YQ)QQ < (7;599)99 < 7;’699 < IBQ;:’YQ‘

(v). By (@), we get Oxy < [929%+22. Hence ([%7y)%¢ < ([2%y22)22. Also, by (iv), we can

observe that (5929%y22)2¢ < 399%~22. Hence (v) follows, since X is transitive.
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Proposition 3.2. Let G be a GE-ideal of X. Then we have

(i) For any B,y € X,3°=~9,08€ G imply v € G,

(i) For any B € X,5 € G if and only if %2 € G.

Proof. (i). Let 8,7 € X be such that 8¢ = 72 and 8 € G. Then (82%y2)¢ =12 =0 € G.
Hence v € G since G is a GE-ideal of X.
(ii). Let 8 € X. Suppose $ € G. Then, by (GE1), (@) and (@),

1 = f99% 922 < %3992 which implies that (59%3999)¢ <12 =0 € G.

By Proposition (i), we get (82%(3222)¢ € G. Now 8 € G and G is a GE-ideal of X, we have
B9¢ € G. Conversely, let 522 € G for any § € X. Since § < 22 and 9 € G, by Proposition

(i), we get 8 € G.

Given a transitive bordered GE-algebra X, consider the next assertion:

(23) (V8,7 € X)(B9%y? < v%).

Question 3.3. Does every transitive bordered GE-algebra X satisfy the condition (@) ¢
The answer to Question @ is negative as seen in the following example.

Example 3.4. Consider a set X := {0,1,2,3,4,5} with the binary operation “x”, which is
given by Table m Then (X, %,1) is a transitive bordered GE-algebra. But X does not satisfy

wn
*

TABLE 1. Cayley table for the binary operation

*/0 1 2 3 4 5
0j1 11111
110 1.2 3 4 5
2|0 113 5 5
3101 21 4 4
410 1 2 3 1 1
510 1 2 3 1 1

(@), since

((250)F(450))F(452) = (0F0)72 = 172 = 2 # 1.

Theorem 3.5. If X satisfies (@), then G is a GE-ideal of X if and only if 0 € G and
(B%7)¢ € G implies that € G for all v € G.
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Proof. Let X be a transitive bordered GE-algebra satisfying (@) Suppose G is a GE-ideal of
X. Then 0 € G. Let (B%y)? € G and v € G. [¥xy < 4239 implies that (72%39)¢ < (Bx7y)?
by (@) By Proposition (i), we have (79%39)¢ € G. Since G is a GE-ideal of X and
v € G, we get B € G. Conversely, assume, on the other hand, that the given conditions hold.
Let (8%%72) € G and 8 € G. Then $957¢ < 738 implies that (v8)? < (8%%+2)° by ([Ld).
Therefore ((y*3)%%(89%72)2)¢ =0 € G. Since (59%72)¢ € G, we get (v%3)? € G. Now € G
and (y*53)¢ implies that v € G.

Theorem 3.6. Let G be a GE-ideal of X. Then (f*y)¢ € G,v € G = € G, VB,yv€ X if
and only if (axf)? <~v=a € G,V3,v€ G,Va € X.

Proof. Suppose (%) € G,y € G = € G, VB,v € X. Let 8,7 € G and o € X be such
that (ax()? < v. Then ((a*f3)%y)? = 0 € G and hence (axf)? € G. Therefore a € G since
B € G. Conversely assume that the condition holds. Let 8,7 € X be such that (f%v)? € G
and v € G. Since (f%7)? < (8%7)?, it follows from the assumption that 5 € G.

Theorem 3.7. Let ) # G C X. Then G is a GE-ideal of X if and only if it satisfies the
following property:

B2 < ~%a? implies that o € G
forall B,v€ G and a € X.

Proof. Assume that G is a GE-ideal of X. Let 8,7 € G and o € X. Suppose 32 < v2xa?.
Then (2 < v%a? < (7%%a?)?? and hence (52%(y%*%a?)?2)? =12 =0 € G. Since f € G and G
is a GE-ideal of X, we get (7¢%a?)? € GG. Since vy € G, we get a € G.

Conversely, assume, on the other hand, that the G satisfies the provided condition. Since
G # 0, choose 3 € G. Clearly 52 < 1 = 39%0°. Then by the given condition, we get 0 € G. Let
B,7 € X be such that 8 € G and (59%72)? € G. By Lemma @(iv), we get (59%72)2? < (39%~2.
Now, by (E), we get

(B%y%)x7? < (B%7°)%%%7°.
Since G is transitive, we have

1 = (B%y0)*(8%y?)
BOF(52))
< B 5),

Hence, we get ¢ < ((9%79)%%~2. Since f € G and (f%+2)? € G, we get v € G by the
assumption. Therefore G is a GE-ideal of X.

IN
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Theorem 3.8. Let G be a non-empty subset of X. Then G is a GE-ideal of X if and only if
it satisfies the following condition for oll 5 € X:

for all p,v € G, (u%%(v2%[32)22)e = 0 implies 5 € G

Proof. Assume that G is a GE-ideal of X. Let u,v € G and f € X be such that
(%% (v9%[2)22)e = 0 € G. Since p € G and G is a GE-ideal of X, we get that (v9%32)¢ € G.
Since v € G, we get that g € G.

Conversely, assume, on the other hand, that the G satisfies the provided condition. For any

B € G, we have
(BOR(5900)00)0 = (BUR(BUR1)00)2 = (BOF12)0 = 1¢ = ()

Hence, by assumption we get 0 € G. Let 5,7 € X. Suppose € G and (9%~2)¢ € G.
We know that (5272)22 < (B9%~2)2. Therefore (59%72)%%(F%~2)? = 1 and hence
((B2%~2)2%%(39%72)2?)2 = 0. Since 8 € G and (f%42)? € G, we get v € G by assumption.
Therefore G is a GE-ideal of X.

Theorem 3.9. A non-empty subset G of X is a GE-ideal of X if and only if it satisfies the
following properties:

(1) B € G and v < 8 implies that v € G,

(ii) Be° € G implies that § € G,

(ii1) B € G implies (7°2xp2)¢ € G,

(iv) p,v € G implies ((u2%(v9%[2))%52)2 € G
for all B,v € X.

Proof. Assume that G is a GE-ideal of X. Then (i) and (ii) follows by Proposition (1) and
Proposition @(u) Let f € G and v € X. Clearly v9%32 < (y2%(32)22. Then, by (E), (@) and
(B), we get that (327(10562)e0)2 < (BH(y0%50)) < (vOH(BERHY))? = (10F1)e = 12 = 0 € G
Hence (8%x(y9%(2)99)¢ € G by (i). Since 8 € G, we get (v9%/32)¢ € G. Thus (iii) follows. Let
w,v € G. Then, by (@), (E) and (@), we have

VORBe < (19%B9)90
which implies that
HOR(VIR?) < (R0
so that
(A) (% (v2%B2))x 9]¢ < [(u®*(v%B2)%)%5]°
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Now we show that [(u@x(r2%32)2)%3¢]¢ € G. By Lemma @(iv), we have
(V9% 32)2e < oEBe.
Then, by (13), ) and ([Ld), we have
W (VR 52) 20 < (v 5°)
which implies that
W RBEY TR < (nER(AT2)F0° < [(uOF(veT50) e e e
So that

VQ;([MQ;(VQ;IBQ)];ﬁQ) < VQ’;[(MQ;(VQ’;BQ)QQ);IBQ]QQ < [VQ;[(MQ;(VQ;’IBQ)QQ);ﬂQ]QQ]QQ

Therefore
1 = R R (U RBONFY)) < ([ (e (7)) 7))
Hence
HOR( R (HEF (v TB0) 2 75 2)2) = 1
Thus

[ ([ [(n* (7% 0) %)% B9 ] 9) )2 = 0 € G
Since 1, v € G, and G is a GE-ideal of X, we get
[(uo%(v2%B2)22)%B9)¢ € G.
Since [(u2%(v2%32)22)%32]¢ € G and G is a GE-ideal of X, we get, from (A),
[(uo%(v2%p2))%5%)¢ € G.

Hence (iv) follows.

Conversely, assume, on the other hand, that the G satisfies the provided conditions. Take
B = v in (éi7). Then we can observe that 0 € G. Let 3,7 € X. Suppose that 5 € G and
(B%%+2)¢ € G. Then, by Lemma @(iv), we have

(B%572)2 < BO%~2
which implies that
(B 2)3y? < (B9n©)#2%y?
So that
1= BER((87570)71?) < BUR((B751 ) 0571,
Therefore

(B2%((B9%72)2%72))xy? < °
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Hence

728 < [(BU((B9%2)29%2) ) xv2e.
Since 8 € G and (9%72)¢ € G, by (iv), we obtain [(S%%((52%7?)%%%y?))xv¢]? € G. Hence, by
(i), 722 € G. Therefore, by (ii), v € G. Thus G is a GE-ideal of X.

4. BORDERED GE-MORPHISM THEOREMS

Definition 4.1 ([17]). Let (X, *x,1x) and (Y, *y, 1y ) be GE-algebras. A mapping¢: X — Y

is called a GE-morphism if it satisfies:

(24) (VB1, B2 € X)(E(BixxB2) = &(B1)*vE(52)).

Note that every GE-morphism is order preversing (see [L7]).

Definition 4.2. Let (X,*x,1x) and (Y,*y, ly) be bordered GE-algebras. A GE-morphism
€: X =Y is called a bordered GE-morphism if it satisfies:

(25) §(0x) = Oy

If a bordered GE-morphism & : X — Y is onto (resp., one-to-one), we say it is a bordered

GE-epimorphism (resp., bordered GE-isomorphism).

Example 4.3. Consider two sets X = {0,1,2,3,4} and Y = {0, 1,2, 3,4} with binary opera-

tions “*x” and “*y”, respectively, which are given by the following Table E Then (X, *x,1x)

TABLE 2. Cayley tables for the binary operations “*x” and “¥y”

*x |0 1 2 3 4 xy |0 1 2 3 4
0(1 1111 01 1 1 11
1101 2 3 4 1101 2 3 4
201110 210110 4
314111 4 311 111 4
4111131 413 11 3 1

and (Y, *y, ly) are bordered GE-algebras. Let £ : X — Y be a mapping defined by
0 if B € {0,4},
1 if Be{1,2,3}.

Then £ is a bordered GE-morphism.
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It is clear that every bordered GE-morphism is a GE-morphism, but the converse is not

true in general as seen in the following example.

Example 4.4. Consider two sets X = {0,1,2,3,4} and Y = {0, 1,2, 3,4} with binary opera-

tions “*x” and “*y”, respectively, which are given by the following Table B Then (X, *x,1x)

TABLE 3. Cayley tables for the binary operations “*x” and “¥y”

*x |0 1 2 3 4 [0 1 2 3 4
0|1 1111 011111
1101 2 3 4 1101 2 3 4
214111 4 21011 3 4
3101 2 10 311121 4
41112 11 4111 2 11

and (Y,*y, ly) are bordered GE-algebras. Let £ : X — Y be a mapping defined by
E(B) =1forall g e X.

Then ¢ is a GE-morphism. But £ is not bordered GE-morphism, since £(0) = 1 # 0.

For any bordered GE-morphism & : X — Y, define the dual kernel of the bordered GE-
morphism £ as Dker(§) = {8 € X | £(8) = Oy }. It is easy to check that Dker(¢) = {0x}

whenever £ is an injective bordered GE-morphism. If £ is bordered, then

£(89) = €(Bxx0x) = £(B)*v&(0x) = E(B)*y 0y = (£(8))?
for all § € X.

Question 4.5. Let X and Y be bordered GFE-algebras.

(i) If £ : X =Y is a GE-morphism, then is (£(83))?¢ = &(B) forall e X ¢
(ii) If £ : X = Y is a bordered GE-morphism, then is Dker(§) a GE-ideal of X ¢

The following example shows that the answer to Question @ is negative.

Example 4.6. Consider two sets X = {0,1,2,3,4} and Y = {0,1,2, 3,4} with binary opera-

tions “*x” and “*y”, respectively, which are given by the following Table H Then (X, *x,1x)
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TABLE 4. Cayley tables for the binary operations “xx” and “*y”

*x [0 1 2 3 4 v [0 1 2 3 4
0(1 1111 0|1 1 111
1101 2 3 4 1101 2 3 4
21011 3 4 210113 4
311111 4 311111 4
4101 2 3 1 413 11 31

and (Y, *y, 1ly) are bordered GE-algebras. Let £ : X — Y be a mapping defined by

(0 itg=0.

1 if B e {1,4},
ey =]t et

2 if B =2

3 if 5 =3.

Then ¢ is a bordered GE-morphism and hence a GE-morphism. But Question @(1) and
Question @(ii) does not hold since

(£(2)xx0)*xx0 = (2xx0)xx0 = 0xx0 =1 #£ 2 = £(2).
Also, Dker(§) = {0x} and it is not a GE-ideal of X since
((0%x0)xx (3%x0))xx0 = (1xx1)*x0 = I¥x0 = 0 € Dker(§) but 3 ¢ Dker(£).
We provide conditions to ensure that the answer to Question @(ii) is positive.

Theorem 4.7. Let X and Y be bordered GE-algebras. If £ : X — Y is a bordered GE-

morphism satisfying
(VB € X)((£(B))?? = £(B)),

then the dual kernel, Dker(§) is a GE-ideal of X .

Proof. Clearly Ox € Dker(§). Let 8,7 € X be such that 8 € Dker(§) and (8% x72)? €
Dker(§). Then £(8) = Oy and

Oy = &£((B%x7%)?) = (£(B%%x77))? = (§(B%)xv€(v?))°
= ((€(8) %y (€(1)9)¢ = ((Oy )%y (£(7))?)*
= (Lry (€()9)¢ = (€(0)*¢ = £(),

and so v € Dker(§). Therefore Dker(€) is a GE-ideal of X.
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Corollary 4.8. Let £ : X — Y be a bordered GE-morphism of bordered GE-algebras X and
Y. IfY is duplex, then the dual kernel, Dker(§), is a GE-ideal of X.

Proposition 4.9. Let X and Y be two bordered GE-algebras and £ : X — Y a bordered
GE-morphism. Then f~Y(G) is a GE-ideal of X for any GE-ideal G of Y.

Proof. Let € : X — Y be a bordered GE-morphism. Suppose G is a GE-ideal of Y. Let 8,v €
X be such that 8 € £71(GQ) and (B9%~2)¢ € £71(G). Then &(B) € G and (£(B)%%E£(v)9)? =
£((B%79)9) € G. Since £(B) € G and G is a GE-ideal, we get £() € G. Hence v € £~ 1(G).
Thus £71(G) is a GE-ideal of X.

Let K be a GE-filter of a transitive GE-algebra X. Consider the set
(26) Rg :={(B,7) e X x X | fxy € K, v¥f € K}.

It is routine to verify that Ry is a congruence relation on X. For each 6 € X, let [§] denote

the set of elements of X to which ¢ is related under Ry, that is,

[6]={B€ X|(4,8) € Ri}

We call [] the equivalence class of § in X under Rg. The collection of all such equivalence

classes is denoted by X/Rp, that is,
X/Ri ={[0] | § € X},

which is called the quotient set of X by Rg. Then (X/Rg,*x,[1]) is a GE-algebra where

is defined as follow:

(V18], vl € X/ Ri)([Blk 7] = [B%7]).

If X is bordered, then X/Rg is also a bordered GE-algebra with the special element [0x].

Proposition 4.10. For any GE-filter K of a transitive bordered GE-algebra X, the congruence
class [0k is a GE-ideal of X .

Proof. Let K be a GE-filter of X. Since X is transitive, we have Ry is a congruence relation
on X. Clearly 0 € [0]x. Let 8 € [0]x and (89%72)? € [0]x. Hence 8¢ = B*x0 € K and
(B%x72)% = (8% x~?2)%%0 € K. Since (8% x72)% < [%x~?, we get 3% xy2 € K. Since
B2 € K, we get y%x0 =2 € K. Since Oxxy =1 € K, we get (v,0) € Rg. Hence v € [0]k.
Therefore [0]x is a GE-ideal of X.

Now, we introduce a congruence relation on bordered GE-algebras with respect to GE-

ideals and we derive some bordered GE-morphism theorems.
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Definition 4.11. Let G be a GE-ideal of a bordered GE-algebra X. For any 3,7 € X, define

a relation Rg on X as follows:

(8,7) € Rg if and only if (8%v)? € G and (y*5)? € G.

Theorem 4.12. If X is a transitive bordered GE-algebra and G o GE-ideal of X, then Rg s
a congruence relation on X. Moreover Rq is a unique congruence such that [0l = G, where

[0]c is the equivalence class of 0 with respect to R¢.

Proof. Clearly R is reflexive and symmetric. Let (53,7),(7,a) € Rg. Then (S%y)¢ €
G, (vx0)? € G and (y*«a)? € G, (axy)? € G. By (E), we get

vxa < (BR)x(Bxa) < (BH7)20(Brar)e.

Hence ((8%7)92%%(5*a)?2)2 < (y*a)?. Since (y*a)? € G, we get that ((5%7)%%(Fxa)2?)? € G.
Since (%7)? € G, we get (f*«)? € G. Similarly, we can obtain (ax3)? € G. Hence (f,«) €
Rq. Therefore R is an equivalence relation on X. Let (8,7) € Rg and (u,v) € Rg. Then
(B%7)2 € G, (v%8)° € G, (u*r)? € G and (vxu)? € G. Since X is transitive, we get Sxy <
(pxB)x(p#y) and so ((u#B)*(uy))? < (B*y)¢. Since (Bx7)? € G, we get ((uxB)*(uxy))? € G.
Similarly, we can get ((uxy)*(ux3))? € G since (v%8)? € G. Hence (ux8, uxy) € Rg. Also,
vy < (pkv)*(u*y) since X is transitive. Thus

v < (i )*(pky) < ((vey)*(pey))2e

Hence ((v#y)x(uxy))? < (uxv)?. Since (ur)? € G, we get ((vxy)*(uxy))? € G. Similarly,
we get ((uxy)*(vxy))? € G since (vxu)? € G. Thus (uxy,v*y) € Rg. Therefore Rg is a
congruence on X. Now, let 5 € [0]g. Then 52 = (§%0)¢ € G. Since 5 < 592, we get 8 € G.
Therefore [0]g € G. Again, let 5 € G. Then (5%0)¢ = 522 € G. Clearly (0x8)¢2 =12=0¢€ G.
Hence (8,0) € Rg, which implies 5 € [0]g. Thus G C [0]g. Therefore [0]g = G.

We can observe that X/Rg = {[f]¢ | B € X}(where [f]g is the equivalence class of
with respect to R¢) is a bordered GE-algebra in which the binary operation *¢ is defined as
Bla*cVla = [B*x7]q for B, € X. Moreover, X/Rg contains the element [0]g. For any
GE-ideal G of a transitive bordered GE-algebra X, we can get the bordered GE-epimorphism
X : X = X/Rgq given by x(8) = [fa-

Theorem 4.13. Let G, M be two GE-ideals of a transitive bordered GE-algebra X. Then
GV M={8¢e€X | ~%(6%p2) =1 for some~y € G and § € M }

is the smallest GE-ideal of X containing G and M.
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Proof. Clearly, 0 € GV M. Let 8 € GV M and (8%%79)¢ € GV M. Then there exists
v,v € G and 0,7 € M such that y9%(6%%39) = 1 and v2% (7% (39%~2)¢?) = 1. Then by Lemma
B.d(iv). @) and (), we get

1 = VER(r (%)) < VIR(OR(B) < BOR(H(r ).
Hence ¢ < v2%(79%~?). Since X is transitive, we get

1= YER(37302) < ARERR(T L)) < ASH RO (r ).

Hence ~95(v9%(6%%(79%79))) = 1. Thus by Lemma B.1|(iv), (§) and () we get

(Y72 (0%%(T9%7%)22)20)#0) ¢ < (v* (V¥ (89(T%7%))))*

— 10
= 0edG
Hence (72 (v%%(59%(79%2)22)22)22)¢ ¢ G where v,v € G and 0,7 € M. Since v,v € G, we
get (09%(79%v2)22)2 € G. Put pu = (§9%(79%v2)22)2. Then pu? = (§9%(79%v2)22)2¢. By Lemma
B.4(iv), ) and (), we have
[0 = (59%(T9572)92)92 < §O%(1%Ry2)%8 < §9%(r%%A2).
Hence 1 = p@ (39 (7%%72)) < §% (7% (u2%y?)). Thus, we get
(09% (7% (u%%~9)))¢ =0 € M.
Hence (09 (7% (p@%y2)922)22)e < (§9% (7% (u2%y?)))? € M. Since §,7 € M, we get (u2*y2)¢ €
M. Put v = (u%~2)2. Then v? = (u2%y?)?? < u2%~2 and hence
1 = v@%w? < v2%(u2%v?) < u2%(vo%%y?)

Since p € G,v € M, we get v € GV M. Therefore GV M is a GE-ideal of X. Let 5 € G.
Clearly p2%x(09x32) = [9xB2 = 1. Since 0 € M, we get 8 € GV M. Hence G C GV M.

Similarly, we get M C GV M.

Let K be any GE-ideal of X such that G C K and M C K. Let § € GV M. Then there
exists y € G C K and 6 € M C K such that v2%(69%3¢) = 1. Hence v2%(09%32)2? = 1, which
implies (72%(d9%(2)22)¢ = 0 € K. Since v € K, we get (09%32)¢ € K. Since § € K, we get
B € K. Hence GV M C K. Therefore GV M is the smallest GE-ideal which contains both G
and M.

The following example illustrates Theorem .
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W
*

TABLE 5. Cayley tables for the binary operation

*|0 1 2 3 4
0j1 1111
110 1 2 3 4
2/3 11 3 3
3121 2 11
412 1 2 1 1

Example 4.14. Consider the set X = {0, 1,2, 3,4} with binary operation “*” which is given
by the following Table a Then (X,*,1) is a transitive bordered GE-algebra. Here we can
observe that M; = {0}, My = {0,2}, M3 = {0,3,4}, and X are the only GE-ideals of X and
My VvV My = Ms is the smallest GE-ideal of X containing M; and M.

Since the intersection of GE-ideals is again a GE-ideal, the following is direct:

Corollary 4.15. For any transitive bordered GE-algebra X, the set Z(X) of all GE-ideals of

X forms a complete lattice.

Theorem 4.16. Let G and M be two GE-ideals of a transitive bordered GFE-algebra X. Then

the mapping € : X — (X/Rqg) x (X/Rar) defined by £(8) = ([Bla, [Blar) for all B € X is a
GE-morphism. Moreover, the following hold:

(1) If € is injective, then G N M = {0},
(id) If € is surjective, then GV M = X.

Proof. Clearly & is well-defined. Let 8,7 € X. Then

§(8%y) = ([Be, [BxvIm) = (Ble*a e, [Blarxarylar) = ([Bla, Blv)*(Wa, ) = €(8)%E (7).

Therefore £ is a GE-morphism.
(). Suppose ¢ is injective. Then clearly DKer (§) = {0}. Now

B € DKer(§) £(8) = 0= ([0]g, [0]nm)

(1Bla, [Blm) = ([0]a, [0]ar)
[Blc = [0l and [B]m = [0]m
B2 e G and B2 e M

BeEG and Be M since 8 < 9°

(O

BeGNM
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Thus DKer(¢) = G N M. Therefore G N M = {0} whenever £ is injective.
(ii). Assume that ¢ is surjective. Clearly ([0]¢, [1la) € (X/G) x (X/M). Since € is surjective,
there exists 8 € X such that £(8) = ([0]¢, [1]ar). Hence
§(8) = (Ola, 1) & ([Ble: [Blar) = (Ola [1]ar)
& [Ble =0l and [B]m = [1m
& fcGand pleM
& feGand pleM

Clearly (9%([399%19) = (%[22 = 1. Since 8 € G and B¢ € M, it imply that 1 € G vV M.
Therefore GV M = X whenever £ is surjective.

Theorem 4.17. Let (X,*x,1x), (Y,*y,1ly) and (Z,%z,17) be bordered GE-algebras. If
§: X =Y and x: Y — Z are bordered GE-morphisms, then

xo&: X = 2Z, f— x(&())

s a bordered GE-morphism.

Proof. Straightforward. g

Theorem 4.18. (Fundamental bordered GE-morphism theorem) Given two bordered GE-
algebras (X, xx,1x) and (Y, *y, ly) in which (X, *x, 1x) is transitive and (Y, *y, ly) is duplex
and antisymmetric, let £ : X — 'Y be a bordered GE-morphism, G a GE-ideal of X and ¢ the
canonical bordered GE-epimorphism X — X/Rq. If G is a subset of Dker(&) then there exists
a unique bordered GE-morphism E: X/Rg —'Y such that the diagram:

x—% vy

(27) It g

X/Rg X/Rg

is commutative. Moreover, E 18 a bordered GE-isomorphism if and only if £ is a bordered
GE-epimorphism and G = Dker(€).

Proof. Let G be a subset of Dker(¢) and define

£: X/Rg — Y, [Bla  £(B).

Let [Bla, [7]a € X/R¢g be such that [B]g = [y]g. Then (8,7) € R, and so (f*x7)? € G C
Dker(¢) and (y¥x3)? € G C Dker(&). Thus

§((B*x7)°) = Oy = (£(F%x7))? = Oy = (£(B)*vE€())? = Oy = £(B)*vE(7) = 1y
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and

E((7FxB)?) = Oy = (€(FxB))® = Oy = (E(NFVE(B)? = Oy = E(NFvE(B) = 1y

Since (Y, *y, ly) is antisymmetric, we have

Hence £~ is well-defined. For any ,v € X, we can observe that

E([Ble*abla) = ([Bxx7la) = E(B*x7) = £(B)*vE(7) = &([Bla)*vE([a),

£([0x]g) = €(0x) = Oy

which shows that §~ is a bordered GE-morphism. Since

(Eo@)(B) = &(p(B)) = &([Bla) = £(B)

for all B € X, we have £op = &, that is, the diagram in (@) is commutative. Let ¥ : X/Rg — Y
be a GE-morphism such that X o ¢ = £. Then

X([z]a) = X(¢(B)) = (X 0 ¥)(B) = £(B) = (£ 0 )(B) = &(p(B)) = &([x]a)

for all [B]lg € X/Rqg. Hence x = ¢, which means that ¢ is unique. Suppose € is a bordered

GE-isomorphism. For every v € Y, there exists []¢ € X/Rg such that £([5]) = . Thus

£(B) = &([Ble) = 7, and so £ is a bordered GE-epimorphism. Let 8 € Dker(§). Then

€([B]) = &(B) = 0y = £([0]¢) and hence [B]g = [0]g. Therefore g < 22 = (B*x0)¢ € G and
hence 8 € G. Hence G = D ker(&). Conversely, assume that £ is a bordered GE-epimorphism

and G = Dker(¢). Let [8la, [v]la € X/Rq be such that £([8]¢) = €([7]e). Then £(8) = £(7),

and

E(Bxx7) = E(B)*v&(7) = E()*vE(y) = 1y = (§(B*x7))? = Oy = &((B*x7)?) = Oy.

Hence (S*x7)? € Dker(§) = G. Similarly, (y%x()? € G. Therefore (8,v) € Rg and [Blg =
[7]g. Hence E is injective. Let v € Y. Then there exists § € X such that {(8) = . Thus
v=£&(8) = £ ([Bla), so € is surjective. Therefore ¢ is a bordered GE-isomorphism. 0

Theorem 4.19. Given three bordered GE-algebras (X,*x,1x), (Y,*y,ly) and (Z,%z,1z) in
which (Z,%z,1z) is duplex and antisymmetric, let £ : X — Y and x : X — Z be bordered
GE-morphisms. If Dker(§) C Dker(x) and £ is a bordered GE-epimorphism, then there exists
a unique bordered GE-morphism o :Y — Z such that the diagram

X sy

(28) e
Z
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s commutative.

Proof. Assume that £ is a bordered GE-epimorphism and Dker(§) € Dker(x). For every
v €Y, there exists § € X such that £(8) = 7. For the element 5 € X, put a := x(8) and
define

0:Y = Z v a=x(h).

We first show that o is well-defined. Let 71,72 € Y be such that v = v, 11 = £(51)

and v, = £(B2) for some [1,82 € X. Then &(Bi1%xP2) = £(P1)*vE&(B2) = 1y and hence
E((B1%xP2)?) = (&(B1*x52))° = Oy. Therefore (B1%x32)¢ € ker(§) C ker(x). Thus 0y =
X((B1%x52)°) = (x(B1)*zx(B2))2 = 1z = x(B1)*zx(B2) since Z is duplex. The similarly way
induces x(B2)*zx(B1) = 1z, and thus x(81) = x(B2) Since Z is antisymmetric. Hence p is
well-defined. Also, we have x(8) = a = o(y) = 0(&(B)) for all 5 € X, which shows that the
diagram in (@) is commutative. Let v1,72 € Y. For every 1,82 € X with 3 = £(51) and

Yo = &(P2), we have

o(m*yye) = o(&(B1)*yE€(B2))
= 0(&(Br¥xP2)) = x(Br¥xP2)
= X(81)*zx(B2) = 0(&(81))*z0(§(B2))

= o(11)*z0(y2)-

We know that £(0x) = Oy € Y. Hence Ox € Dker(§) C Dker(x). Therefore x(0x) = 0z.
Now 0(0y) = 0(§(0x)) = 00&(0x) = x(0x) = 0z. Hence g is a bordered GE-morphism. The

uniqueness of g is straightforward since ¢ is a bordered GE-epimorphism.

Theorem 4.20. Given two bordered GE-algebras (X,*x,1x) and (Y, *y,1ly), let§: X =Y
be a bordered GE-epimorphism. If (X,xx,1x) is transitive and (Y,xy,1ly) is duplex and
antisymmetric, then X/Rpyer(¢) is bordered GE-isomorphic toY.

Proof. Note from Corollary @ that Dker(§) is a GE-ideal of X, and so X/Rpyer(e) is a
bordered GE-algebra with the special element [0x]p ker(¢).- Define a mapping

X : X/Rpkere) = Y, [Blpker(e) = §(8)-

If [B1]pker(e) = [B2]Dker(e) I X/ Rpier(e), then (B1xx52)? € Dker(§) and (B2xx61)? € D ker(€).

Hence

E((B1xxP2)?) = 0y = (£(B1%xB2))? = Oy = (§(B1)*vE(B2))? = Oy = &(Br)*vE(B2) = 1y
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and
§((BaxxB1)?) = Oy = (§(Ba*xB1))? = Oy = (£(B2)*vE(B1))? = Oy = &(Ba)*vE(B1) = 1y,

and thus x([B1]pker(e)) = §(61) = €(B2) = x([B2]Dker(e))- This shows that x is a well-defined
mapping. For each v € Y, there exists § € X such that {(5) = ~ since £ is onto. Thus
X([B]Dker(f)) = 5(6) = v which shows that x is onto. Suppose that X([B]Dker(f)) = X([’Y]Dker(f))
in X/Rpyer(€). Then £(B8) = &£(7y) and hence £(5)*x&(7y) = 1y which implies that £((5xxv)?) =
Oy. Hence (B*x7)¢ € Dker(§) and similarly (v*x3)¢ € Dker(€). Therefore (5,7) € Rpker(e)-
Hence [B]pker(¢) = [V]Dker(¢)- Hence X is injective. Let [Blpker(e) € X/BDker(e) and [V]pker(e) €
X/RDker(f)- Then

X([B]D ker(e) *D ker(e) [V Dker(e)) = X([B*xV]Dker(e))
= {(B*x)
= &£(B)*v&(7)
= X([Blpker(e)) *y X (VD ker(e))-

Also, X([0x]pker(e)) = §(0x) = Oy. Thus X/Rpier(e) is bordered GE-isomorphic to Y.

Theorem 4.21. Given two transitive bordered GE-algebras (X,*x,1x) and (Y,*y,1ly), let
£: X =Y beabordered GE-epimorphism. If (Y, *y, ly) is antisymmetric and K is a GE-ideal
of Y, then X/R¢-1 (k) is bordered GE-isomorphic to Y/Ry.

Proof. We know that ¢ !(K) is a GE-ideal of X. Hence we can make the quotient GE-algebra
X/Re-1(k). Let m 1Y — Y/Rk be the canonical GE-morphism. Then y := 70§ : X —
Y /R is a GE-epimorphism and Y/Rj is antisymmetric since Y is antisymmetric. For any
B € X, we get x(8) = (mo&)(B) = m(¢(A)) = [E(B)i where [€(3)]i is the equivalence
class containing £(8) in Y/Ri. If B € £71(K), then £(B) € K and so [¢(8)]x = K which
says x(8) = K. Hence 8 € Dker(x), and thus £ '(K) C Dker(x). If 3 € Dker(x), then
K =x(8) = [£(8)] k. Hence £(8) € K, i.e., B € E1(K), and so Dker(x) C £ }(K). Therefore
Dker(x) = ¢ Y(K). It follows from Theorem that there exists a bijective bordered GE-
morphism § : X/Re-1x) — Y/Rg, and so X/R¢-1(f is bordered GE-isomorphic to Y/R.

|

Proposition 4.22. Given two bordered GE-algebras (X,*x,1x) and (Y,*y,1ly), let £ : X —
Y be a bordered GE-epimorphism. If G is a GE-ideal of X which contains Dker(§), then

§1(EG) =G.
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Proof. Tt is clear that G C £71(¢(G)). If B € €7 1(&(G)), then £(B) € £(G) and hence there
exists v € G such that £(58) = £(vy). Hence

E(Bxxy) = E(B)*vE(y) = 1y = (£(B*x7))? = Oy = &((B*x7)?) = Oy.

which implies that (8% xv)? € Dker(§) C G. Thus 8 € G since G is a GE-ideal of X. Therefore
¢HE(G) =G g

5. CONCLUSION

In this paper, we have studied the properties of GE-ideals of a transitive bordered GE-
algebra and given the characterization of GE-ideals. We have observed that the set of all
GE-ideals of a transitive bordered GE-algebra forms a complete lattice. We have introduced
the notion of bordered GE-morphism and established fundamental bordered GE-morphism
theorem. We have introduced a congruence relation on a bordered GE-algebra with respect

to GE-ideal and derived some bordered GE-morphism theorems.
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