[1] S. Dol, M. Herzog, G. Kaplan and A. Lev, On the size of the nilpotent residual in nite groups, J. Group
Theory Vol. 10 (2007), pp. 299-305.
[2] X. Guo and L. Gong, A note on the size of the nilpotent residual in nite groups, Arch. Math Vol. 99
(2012), pp. 413-416.
[3] Z. Halasi and K. Podoski, Bound in groups with trivial Frattini subgroup, J. Algebra Vol. 319 No. 3 (2008)
pp. 893-896.
[4] P. Hall, Finite-by-nilpotent groups, Proc. Camb. Phil. Soc. Vol. 52 (1956), pp. 611-616.
[5] R. Hatamian, M. Hassanzadeh and S. Kayvanfar, A converse of Baer's theorem, Ric. mat. Vol. 63 (2014),
pp. 183-187.
[6] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra Vol. 40 No. 1(1986),
pp. 63-85.
[7] N. S. Hekster, Varieties of groups and isologisms, J. Austral. Math. Soc. (Series A) Vol. 46 (1989), pp.
22-60.
[8] M. Herzog, G. Kaplan and A. Lev, On the commutator and the center of nite groups, J. Algebra Vol. 728
(2004), pp. 494-501.
[9] M. Herzog, G. Kaplan and A. Lev, The size of the commutator subgroup of nite groups, J. Algebra Vol.
320 (2008), pp. 980-986.
[10] L. C. Kappe and J. Kirtland, Finite group with trivial Frattini subgroups, Arch. Math. Vol. 80 (2003), pp.
225-234.
[11] K. Podoski and B. Szegedy, Bounds for the index of the centre in capable groups, Proc. Amer. Math. Soc.
Vol. 133 No. 12 (2005), pp. 3441-3445.
[12] D. J. S. Robinson, A Course in the Theory of Groups, Springer, Berlin, (1996).