[1] F. Amirzade and M.-R Sadeghi, “Analytical lower bounds on the size of elementary trapping sets of
variable-regular LDPC codes with any girth and irregular ones with girth 8,” IEEE Trans. Commun., vol.
66, no. 6, (2018) pp. 2313–2321.
[2] F. Amirzade and M.-R Sadeghi, “Lower bounds on the lifting degree of QC-LDPC codes by diﬀerence
matrices,” IEEE Access, vol. 6, (2018) pp. 23688–23700.
[3] F. Amirzade and M.-R Sadeghi, “Eﬃcient search of QC-LDPC codes with girths 6 and 8 and free of small
elementary trapping sets with small size”, arXiv: 1803.08141 (2018) .
[4] F. Amirzade, M.-R Sadeghi and D.Panario, “QC-LDPC construction free of small size elementary trapping
sets based on multiplicative subgroups of a ﬁnite ﬁeld”, Latin American Week on Coding and Information,
(2018).
[5] Q. Diao, Q. Huang, S. Lin and K. Abdel-Ghaﬀar, “A matrix-theoretic approach for analysing Quasi-Cyclic
Low-Density Parity-Check codes,” IEEE Trans. Inform. Theory, vol. 58, no. 6, (2012) pp. 4030–4048.
[6] Q. Diao, Q. Huang, S. Lin and K. Abdel-Ghaﬀar, “ A transform approach for analyzing and constructing
quasi-cyclic low-density parity-check codes,” IEEE Trans. Inform. Theory Appl. Workshop, San Diego,
CA, USA, vol. 58, no. 6, (2011) pp. 6–11.
[7] M. Diouf, D. Declercq, S. Ouya and B. Vasic, “A PEG-like LDPC code design avoiding short trapping
sets,” IEEE Int. Symp. Inf. theory (ISIT), vol. 6, (2015) pp. 14–19.
[8] M. P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check codes from circulant permutation matrices,”
IEEE Trans. Inform. Theory, vol. 50, no. 8, (2004) pp. 1788–1793.
[9] J. Li, K. Liu, S. Lin and K. Abdel-Ghaﬀar, “Quasi-Cyclic LDPC codes on two arbitrary sets of a ﬁnite
ﬁeld,” IEEE Int. Symp. Inform. Theory, vol. 62, no. 8, (2014) pp. 2454–2458.
[10] K. Liu, Q.Huang, S. Lin and K. Abdel-Ghaﬀar, “Quasi-Cyclic LDPC codes: Construction and rank analysis
of their parity-check matrices,” IEEE Trans. Comm., vol. 57, no. 1, (2009) pp. 84–93.
[11] K. Liu, S. Lin and K. Abdel-Ghaﬀar, “Algebraic Quasi-Cyclic LDPC codes: Construction, low error-ﬂoor,
large girth and a reduced-complexity decoding scheme,” IEEE Trans. Comm., vol. 62, no. 8, (2014) pp.
2626–2637.
[12] D. V. Nguyen, S. K. Chilappagari, N. W. Marcellin and B. Vasic, “On the construction of structured LDPC
codes free of small trapping sets,” IEEE Trans. Inf. Theory, vol. 58, no. 4, (2012) pp. 2280–2302.
[13] S. Song, B. Zhao, S. Lin and K. Abdel-Ghaﬀar, “A uniﬁed approach to the construction of binary and
nonbinary Quasi-cyclic LDPC codes based on ﬁnite ﬁeld,” IEEE Trans. Comm., vol. 57, no. 1, (2009) pp.
84–93.
[14] X. Tao, Y. Li, Y. Liu and Z. Hu “On the construction of LDPC codes free of small trapping sets by
controlling cycles,” IEEE Commun. Letters, vol.60, no. 9, (2017) 5188–5203.
[15] L. Zhang, S. Lin and K. A. Ghaﬀar, “Quasi-Cyclic LDPC codes on cyclic subgroups of ﬁnite ﬁelds,” IEEE
Trans. Comm., vol. 59, no. 9, (2011) pp. 2330–2336.
[16] L. Zhang, S. Lin, K. A. Ghaﬀar and B. Zhou, “Circulant arrays: Rank analysis and construction of Quasi
Cyclic LDPC codes,” IEEE Trans. Comm., vol. 59, no. 9, (2010) pp. 2330–2336.