A new class of dual notions: $S$-co-$r$-submodules and $S$-co-$n$-submodules based on multiplicatively closed subsets

Document Type : Research Paper

Authors

Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697, Tehran, Iran

Abstract

Let $R$ be a commutative ring, $M$ be an $R$-module and $S\subseteq R$ be a multiplicatively closed subset of $R$. The purpose of this paper is to introduce and investigate the concepts of $S$-co-$r$-submodules and $S$-co-$n$-submodules by using the notion of a multiplicatively closed subset of $R$. A non-zero submodule $N$ of $M$ with $Rad(Ann(M))\cap S=\emptyset$ is called an $S$-co-$n$-submodule, if there exists $s\in S$ such that whenever $aN\subseteq K$ and $sa\not \in Rad(Ann(M))$ for some $a\in R$ and a submodule $K$ of $M$, then $sN\subseteq K$. Many properties and examples are given of such submodules. Also, we state the correspondence between $S$-co-$r$-submodules and $S$-co-$n$-submodules.
 

Keywords


[1] D. D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra, 48 No. 8 (2020) 1-10.
[2] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math., 28 No. 3 (2007) 247-252.
[3] F. Farshadifar, S-second submodules of a module, Algebra Discrete Math., 32 No. 2 (2021) 197-210.
[4] F. Farshadifar, S-secondary submodules of a module, Comm. Algebra, 49 No. 4 (2021) 1394-1404.
[5] F. Farshadifar, S-copure submodules of a module, Miskolc Math. Notes, 24 No. 1 (2023) 153-163.
[6] F. Farshadifar, The dual notion of r-submodules of modules, Int. Electronic J. Algebra , 34 (2023) 112-125.
[7] F. Farzalipour, On almost semiprime submodules, Algebra, 2014 (2014) 752858.
[8] F. Farzalipour and P. Ghiasvand, On S-1-absorbing prime submodules, J. Algebra Its Appl., 21 No. 6 (2022) 2250115.
[9] S. C. Lee and R. Varmazya, Semiprime submodules of a module and related concepts, J. Algebra Its Appl., 18 No. 8 (2019) 1950147.
[10] H. A. Khashan, On almost prime submodules, Acta Math. Sci., 32 No. 2 (2012) 645-651.
[11] H. A. Khashan and E. Yetkin Celikel, S-n-ideals of commutative rings, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72 No. 1 (2023) 199-215.
[12] R. Mohamadian, r-submodules and uz-modules, Alg. Struc. Appl., 8 No. 1 (2021) 61-73.
[13] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 No. 1 (2012) 913-920.
[14] A. Pekin, Ü. Tekir and Ö. Kiliç, S-semiprime submodules and S-reduced modules, J. Math., 2020 (2020) 8824787.
[15] E. S. Sevim, T. Arabaci, Ü. Tekir and S. Koç, On S-prime submodules, Turk. J. Math., 43 No. 2 (2019) 1036-1046.
[16] G. Ulucak, Ü. Tekir and S. Koç, On S-2-absorbing submodules and vn-regular modules, An. St. Uni. Ovidius Constanta, 28 No. 2 (2020) 239-257.
[17] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Springer, Singapore, 2016.