[1] M. J. Asensio, J. A. López Ramos and B. Torrecillas, On Gorenstein gr-injective and gr-projective modules, Commun. Algebra, 26 No. 1 (1998) 225-240.
[2] M. J. Asensio, J. A. López Ramos and B. Torrecillas, On covers and envelopes in the context of gr-Gorenstein rings, J. Algebra, 215 (1999) 437-459.
[3] M. Auslander and M. Bridger, Stable Module Theory, No. 94, American Mathematical Society, 1969.
[4] L. L. Avramov and A. Martsinkovsky, Cohomology theories for modules with finite Gorenstein dimension, Proc. Lond. Math. Soc., 85 No. 3 (2002) 393-440.
[5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1998.
[6] D. Bennis and N. Mahdou, Modules with strong Gorenstein properties: Projective, injective, and flat, J. Pure Appl. Algebra, 210 (2007) 437-445.
[7] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, Vol. 60, Cambridge University Press, Cambridge, 1998.
[8] L. G. Chouinard II, On the finiteness of weak and injective dimensions, Proc. Am. Math. Soc., 60 (1976) 57-60.
[9] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, Vol. 1747, Springer, Berlin, 2000.
[10] L. W. Christensen and H. Holm, Properties of Auslander categories in an ascent setting, Can. J. Math., 61 (2009) 76-108.
[11] L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein properties via ring homomorphisms, J. Pure Appl. Algebra, 214 (2010) 982-989.
[12] L. W. Christensen, H. B. Foxby and A. Frankild, Restricted homological dimensions and Cohen-Macaulay properties, J. Algebra, 251 No. 1 (2002) 497-502.
[13] L. W. Christensen, H. B. Foxby and H. Holm, Beyond totally reflexive modules and back: a survey on Gorenstein dimensions, In: Commutative Algebra: Noetherian and Non-Noetherian Perspectives, pp. 101-143, Springer New York, New York, 2010.
[14] L. W. Christensen, A. Frankild and H. Holm, Gorenstein dimensions: Projective, injective, and flat modules, with a functorial description and applications, J. Algebra, 302 (2006) 231-279.
[15] R. Fossum and H. B. Foxby, Graded module categories, Math. Scand., 35 (1974) 288-300.
[16] H. B. Foxby, Isomorphisms in complexes and homological aspects of modules, Math. Scand., 40 (1977) 5-19.
[17] Z. Heidarian, The exitence totally reflexive covers, Alg. Struc. Appl., 6 No. 2 (2019) 81-86.
[18] H. Holm, Dimensions in Gorenstein homological algebra, J. Pure Appl. Algebra, 189 (2004) 167-193.
[19] L. Khatami, M. Tousi and S. Yassemi, Conditions for the finiteness of the Gorenstein injective dimension, Proc. Am. Math. Soc., 137 (2009) 2201-2207.
[20] H. Matsumura, Commutative Ring Theory, Vol. 8, 2nd edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
[21] C. Menini and A. Del Rio, Morita duality applied to graded rings, Commun. Algebra, 19 No. 6 (1991) 1765-1794.
[22] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Vol. 28, North-Holland Mathematical Library, 1982.
[23] C. Nastasescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors and graded ring applications, J. Algebra, 123 (1989) 397-413.
[24] J. R. Strooker, Homological Questions in Local Algebra, Vol. 145, London Mathematical Society Lecture Note Series, Cambridge University Press, 1990.
[25] C. A. Weibel, Introduction to Homological Algebra, Vol. 38, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1994.