On the graded Gorenstein homological dimensions

Document Type : Research Paper

Author

Department of Mathematics, NT. C., Islamic Azad University, Tehran, Iran.

Abstract

This paper explores the intriguing relationships between graded homological dimensions and standard homological dimensions. We present an overview of the concept of graded Gorenstein homological dimensions for modules associated with commutative graded rings and derive key properties in this context. This framework provides a natural foundation for comparing graded Gorenstein homological dimensions with conventional Gorenstein homological dimensions.

Keywords


[1] M. J. Asensio, J. A. López Ramos and B. Torrecillas, On Gorenstein gr-injective and gr-projective modules, Commun. Algebra, 26 No. 1 (1998) 225-240.
[2] M. J. Asensio, J. A. López Ramos and B. Torrecillas, On covers and envelopes in the context of gr-Gorenstein rings, J. Algebra, 215 (1999) 437-459.
[3] M. Auslander and M. Bridger, Stable Module Theory, No. 94, American Mathematical Society, 1969.
[4] L. L. Avramov and A. Martsinkovsky, Cohomology theories for modules with finite Gorenstein dimension, Proc. Lond. Math. Soc., 85 No. 3 (2002) 393-440.
[5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1998.
[6] D. Bennis and N. Mahdou, Modules with strong Gorenstein properties: Projective, injective, and flat, J. Pure Appl. Algebra, 210 (2007) 437-445.
[7] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, Vol. 60, Cambridge University Press, Cambridge, 1998.
[8] L. G. Chouinard II, On the finiteness of weak and injective dimensions, Proc. Am. Math. Soc., 60 (1976) 57-60.
[9] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, Vol. 1747, Springer, Berlin, 2000.
[10] L. W. Christensen and H. Holm, Properties of Auslander categories in an ascent setting, Can. J. Math., 61 (2009) 76-108.
[11] L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein properties via ring homomorphisms, J. Pure Appl. Algebra, 214 (2010) 982-989.
[12] L. W. Christensen, H. B. Foxby and A. Frankild, Restricted homological dimensions and Cohen-Macaulay properties, J. Algebra, 251 No. 1 (2002) 497-502.
[13] L. W. Christensen, H. B. Foxby and H. Holm, Beyond totally reflexive modules and back: a survey on Gorenstein dimensions, In: Commutative Algebra: Noetherian and Non-Noetherian Perspectives, pp. 101-143, Springer New York, New York, 2010.
[14] L. W. Christensen, A. Frankild and H. Holm, Gorenstein dimensions: Projective, injective, and flat modules, with a functorial description and applications, J. Algebra, 302 (2006) 231-279.
[15] R. Fossum and H. B. Foxby, Graded module categories, Math. Scand., 35 (1974) 288-300.
[16] H. B. Foxby, Isomorphisms in complexes and homological aspects of modules, Math. Scand., 40 (1977) 5-19.
[17] Z. Heidarian, The exitence totally reflexive covers, Alg. Struc. Appl., 6 No. 2 (2019) 81-86.
[18] H. Holm, Dimensions in Gorenstein homological algebra, J. Pure Appl. Algebra, 189 (2004) 167-193.
[19] L. Khatami, M. Tousi and S. Yassemi, Conditions for the finiteness of the Gorenstein injective dimension, Proc. Am. Math. Soc., 137 (2009) 2201-2207.
[20] H. Matsumura, Commutative Ring Theory, Vol. 8, 2nd edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
[21] C. Menini and A. Del Rio, Morita duality applied to graded rings, Commun. Algebra, 19 No. 6 (1991) 1765-1794.
[22] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Vol. 28, North-Holland Mathematical Library, 1982.
[23] C. Nastasescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors and graded ring applications, J. Algebra, 123 (1989) 397-413.
[24] J. R. Strooker, Homological Questions in Local Algebra, Vol. 145, London Mathematical Society Lecture Note Series, Cambridge University Press, 1990.
[25] C. A. Weibel, Introduction to Homological Algebra, Vol. 38, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1994.