[1] M. Barbut and B. Monjardet, Ordre et Classification, algèbre et combinatoire, Zbl 0267.6001, 1970.
[2] G. Birkhoff, Lattice Theory, Vol. 25, American Mathematical Soc., 1940.
[3] A. Arnauld and P. Nicole, Logic or the Art of Thinking, Cambridge University Press, 1996.
[4] B. A. Davey and P. A. Hilary, Introduction to Lattices and Order, Cambridge University Press, 2002.
[5] B. Dushnik and M. W. Edwin, Partially ordered sets, Am. J. Math., 63 No. 3 (1941) 600-610.
[6] M. Erné, Adjunctions and Galois connections: Origins, history and development, In: Galois connections and applications (pp. 1-138). Dordrecht, Springer Netherlands.
[7] B. Ganter, K. Attila and R. Sándor, Extent partitions and context extensions, Math. Slovaca., 63 No. 4 (2013) 693-706.
[8] B. Ganter, S. Gerd and W. Rudolf, Formal Concept Analysis: Foundations and Applications, Vol. 3626, Springer, 2005.
[9] Y. Y. Kitamura and Y. Tanaka, Partially ordered rings, Tsukuba J. Math., 38 No. 1 (2014) 39-58.
[10] L. Lambrechts, Formal Concept Analysis, Vrije Universtiteit, Brussels, 2012.
[11] O. Ore, Galois connetions, Trans. Am. Math. Soc., 55 (1944) 493-513.
[12] J. Poelmans, S. O., Kuznetsov, D. I., Ignatov and G. Dedene, Formal concept analysis in knowledge processing: A survey on models and techniques, Expert Syst. Appl., 40 No. 16 (2013) 6601-6623.
[13] D. Ruan, Computational Intelligence in Decision and Control, Proceedings of the 8th International FLINS Conference, Madrid, Spain, 21-24 September 2008, Vol. 1, World Scientific, 2008.
[14] Wille, R. Formal concept analysis as mathematical theory of concepts and concept hierarchies, In: Formal concept analysis: Foundations and applications (pp. 1-33), Springer Berlin Heidelberg, 2005.
[15] S. A. Steinberg, Lattice-ordered Rings and Modules, Springer, New York, 2010.