Some aspects of marginal automorphisms of a finite $p$-group

Document Type : Research Paper

Author

Department of Mathematics, Payame Noor University (PNU), 19395-3697, Tehran, Iran.

10.29252/as.2021.2538

Abstract

Let $F$ be a free group, $\mathcal{V}$ be a variety of groups defined by the set of laws $V\subseteq F$ and $G$ be a finite $\mathcal{V}$-nilpotent $p$-group. The automorphism $\alpha$ of $G$ is said to be a marginal automorphism (with respect to $V$), if for all $x\in G$, $x^{-1}x^{\alpha}\in V^{\star}(G)$, where $V^{\star}(G)$ denotes the marginal subgroup of $G$. An automorphism $\alpha$ of $G$ is called an IA-automorphism if $x^{-1}x^{\alpha}\in G'$ for each $x\in G$. An automorphism $\alpha$ of $G$ is called a class preserving if for all $x\in G$, there exists an element $g_x\in G$ such that $x^{\alpha}=g_x^{-1}xg_x$. Let $\operatorname{Aut}^{V^{\star}}(G)$, $\operatorname{Aut}^{G'}(G)$ and $\operatorname{Aut}_c(G)$ respectively, denote the group of all marginal automorphisms, IA-automorphisms and class preserving automorphisms of $G$. In this paper, first we give a necessary and sufficient condition on a finite $\mathcal{V}$-nilpotent $p$-group $G$ such that each marginal automorphism of $G$ fixes the center of $G$ element-wise. Then we characterize all finite $\mathcal{V}$-nilpotent $p$-groups $G$ such that $\operatorname{Aut}^{V^{\star}}(G)=\operatorname{Aut}^{G'}(G)$. Finally, we obtain a necessary and sufficient condition for a finite $\mathcal{V}$-nilpotent $p$-group $G$ such that $\operatorname{Aut}^{V^{\star}}(G)=\operatorname{Aut}_c(G)$.

Keywords


[1] R. D. Carmicheal, Groups of Finite Order, Dover Publications, New York, 1965.
[2] M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra, 29 No. 5 (2001) 2081-2087.
[3] N. S. Hekster, Varities of groups and isologisms, J. Austral. Math. Soc. (Series A), 46 (1989) 22-60.
[4] H. Karla and D. Gumber, On equality of central and class preserving automorphisms of finite p-groups, Proc. Indian Acad. Sci. (Math. Sci.), 125 No. 2 (2015) 711-725.
[5] M. R. R. Moghaddam and H. Safa, Some properties of marginal automorphisms of groups, Bull. Iran. Math. Soc., 39 No. 6 (2013) 1181-1188.
[6] M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra, 23 (1995) 2045-2065.
[7] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967.
[8] M. R. Rismanchian, V-nilpotent groups and 5-term exact sequence, Comm. Algebra, 42 (2014) 1559-1564.
[9] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin, 1982.
[10] M. Shabani Attar, On the marginal automorphisms of a group, Comm. Algebra, 37 (2009) 2300-2308.
[11] M. Shabani Attar, Finite p-groups in which each central automorphism fixes centre elementwise, Comm. Algebra, 40 (2012) 1096-1102.
[12] M. Shabani Attar, On equality of certain automorphism groups of finite groups, Comm. Algebra, 45 No. 1 (2017) 437-442.
[13] R. Soleimani, On some p-subgroups of automorphism group of a finite p-group, Vietnam J. Math., 36 No. 1 (2008) 63-69.
[14] M. K. Yadav, On central automorphisms fixing the center element-wise, Comm. Algebra, 37 (2009) 4325-4331.