Quaternary codes and a class of 2-designs invariant under the group $A_8$

Document Type : Research Paper

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

10.29252/as.2021.2254

Abstract

In this paper, we use the Key-Moori Method 1 and construct a quaternary code $\mathcal{C}_8$ from a primitive representation of the group $PSL_2(9)$ of degree 15. We see that $\mathcal{C}_8$ is a self-orthogonal even code with the automorphism group isomorphic to the alternating group $A_8$. It is shown that by taking the support of any codeword $\omega$ of weight $l$ in $\mathcal{C}_8$ or $\mathcal{C}_8^\bot$, and orbiting it under $A_8$, a 2-$(15,l,\lambda)$ design invariant under the group $A_8$ is obtained, where $\lambda=\binom{l}{2}|\omega^{A_8}|/\binom{15}{2}$. A number of these designs have not been known before up to our best knowledge. The structure of the stabilizers $(A_8)_\omega$ is determined and moreover, primitivity of $A_8$ on each design is examined.

Keywords


[1] G. Amery, S. Gomani and B. G. Rodrigues, Designs and Binary Codes from Maximal Subgroups and Conjugacy Classes of M11, Math. Commun., 26 No. 2 (2021) 159-175.
[2] E. F. Assmus Jr. and J. D. Key, Designs and their Codes, Cambridge University Press, Cambridge, 1992.
[3] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. I, Second edition, Cambridge University Press, Cambridge, 1999.
[4] J. Cannon, W. Bosma, C. Fieker and A. Steel, Handbook of Magma Functions, Version 2.19, Sydney, 2013, available online at http://www.magma.maths.usyd.edu.au/magma/.
[5] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second edition, Chapman & Hall/CRC, Boca Raton, 2007.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
[7] M. R. Darafsheh, Designs from the Group PSL2(q), q Even, Des. Codes Cryptogr., 39 (2006) 311-316.
[8] M. R. Darafsheh, A. R. Ashrafi and M. Khademi, Some Designs Related to Group Actions, Ars. Combin., 86 (2008) 65-75.
[9] M. R. Darafsheh, A. R. Ashrafi and M. Khademi, On Designs Constructed by Group Actions, J. Combin. Math. Combin. Comput., 70 (2009) 235-245.
[10] M. R. Darafsheh, A. Iranmanesh and R. Kahkeshani, Some Designs Invariant Under the Groups S8 and A9, Des. Codes Cryptogr., 51 (2009) 211-223.
[11] M. R. Darafsheh, A. Iranmanesh and R. Kahkeshani, Designs from the Groups PSL2(q) for Certain q, Quaest. Math., 32 No. 3 (2009) 297-306.
[12] C. Dean, V. M. Crnkovic and B. G. Rodrigues, On Self-Orthogonal Designs and Codes Related to Held's Simple Group, Adv. Math. Commun., 12 (2018) 607-628.
[13] R. Kahkeshani, 1-Designs from the Group PSL2(59) and their Automorphism Groups, Math. Interdisc. Res., 3 (2018) 147-158.
[14] R. Kahkeshani, On Some Designs Constructed from the Groups PSL2(q), q = 53; 61; 64, Alg. Struc. Appl., 7 No. 1 (2020) 59-67.
[15] R. Kahkeshani, M. R. Darafsheh and A. Iranmanesh, Self-Dual Designs and their Binary Codes Obtained from the Group PSL2(13), Creat. Math. Inform., 18 No. 2 (2009) 172-181.
[16] J. D. Key and J. Moori, Designs, Codes and Graphs from the Janko Groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002) 143-159.
[17] J. D. Key and J. Moori, Correction to: Designs, Codes and Graphs from the Janko Groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002) 143-159", J. Combin. Math. Combin. Comput., 64 (2008) 153.
[18] J. D. Key, J. Moori and B. G. Rodrigues, On Some Designs and Codes from Primitive Representations of Some Finite Simple Groups, J. Combin. Math. Combin. Comput., 45 (2003) 3-19.
[19] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, 1993.
[20] J. Moori and B. G. Rodrigues, A Self-Orthogonal Doubly Even Code Invariant Under McL:2, J. Combin. Theory Ser. A, 110 (2005) 53-69.
[21] J. Moori and B. G. Rodrigues, Some Designs and Codes Invariant Under the Simple Group Co2, J. Algebra, 316 (2007) 649-661.
[22] J. Moori, B. G. Rodrigues, A. Saeidi and S. Zandi, Some Symmetric Designs Invariant Under the Small Ree Groups, Comm. Algebra, 47 No. 5 (2019) 2131-2148.
[23] J. Moori, B. G. Rodrigues, A. Saeidi and S. Zandi, Designs from Maximal Subgroups and Conjugacy Classes of Ree Groups, Adv. Math. Commun., 14 No. 4 (2020) 603-611.
[24] J. Moori and A. Saeidi, Some Designs and Codes Invariant Under the Tits Group, Adv. Math. Commun., 11 No. 1 (2017) 77-82.
[25] J. Moori and A. Saeidi, Constructing Some Designs Invariant Under PSL2(q), q Even, Comm. Algebra, 46 No. 1 (2018) 160-166.
[26] J. Moori and A. Saeidi, Some Designs Invariant Under the Suzuki Groups, Util. Math., 109 (2018) 105-114.
[27] V. S. Pless and W. C. Huffman, Handbook of Coding Theory, Vol. I, Elsevier, Amsterdam, 1998.
[28] B. G. Rodrigues, Self-Orthogonal Designs and Codes from the Symplectic Groups S4(3) and S4(4), Discrete Math., 308 (2008) 1941-1950.
[29] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.