Neutrosophic quadruple BCI-commutative ideals

Document Type: Research Paper

Authors

1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

2 Department of Mathematics, Shahid Beheshti University, Tehran, Iran

3 Department of Mathematics Education, Gyeong sang National university, Chinju, Korea

10.29252/as.2020.1794

Abstract

The notion of a neutrosophic quadruple BCI-commutative ideal in a neutrosophic quadruple BCI-algebra is introduced, and  several properties are investigated. Relations between a neutrosophic quadruple ideal and a neutrosophic quadruple BCI-commutative ideal are discussed, and conditions for the neutrosophic quadruple ideal to be a neutrosophic quadruple BCI-commutative ideal are given.  Conditions for the neutrosophic quadruple set to be a neutrosophic quadruple BCI-commutative ideal are provided, and  the extension property of a neutrosophic quadruple BCI-commutative ideal is considered.

Keywords


[1] A.A.A. Agboola, B. Davvaz and F. Smarandache, Neutrosophic quadruple algebraic hyperstructures, Ann Fuzzy Math. Inform. 14(1) (2017), 29-42.
[2] S.A. Akinleye, F. Smarandache and A.A.A. Agboola, On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems 12 (2016), 122-126.
[3] A. Borumand Saeid and Y.B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14(1) (2017), 87-97.
[4] R. A. Borzooei, H. Farahani and M. Moniri, Neutrosophic Deductive Filters on BL-Algebras, Journal of Intelligent and Fuzzy Systems, 26(6), ( 2014), 2993-3004.
[5] R.A. Borzooei, X. Zhang, F. Smarandache and Y.B. Jun, Commutative Generalized Neutrosophic Ideals in BCK-Algebras, Symmetry , 10(8), 350 (2018), 1-15.
[6] R.A. Borzooei, M. Mohseni Takallo, F. Smarandache and Y.B. Jun, Positive implicative BMBJ-neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, 23 (2018), 148-163.
[7] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[8] Y.B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform. 14(1) (2017), 75-86.
[9] Y.B. Jun, S.J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms (2018), 7, 23.
[10] Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Information (2017), 8, 128.
[11] Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms (2018), 7, 3.
[12] Y.B. Jun, S.Z. Song, F. Smarandache and H. Bordbar, Neutrosophic quadruple BCK/BCI-algebras, Axioms (2018), 7, 41; doi:10.3390/axioms7020041
[13] S. Khademan, M. M. Zahedi, R. A. Borzooei and Y. B. Jun, Neutrosophic Hyper BCK-Ideals, Neutrosophic Sets and Systems, 27 (2019), 201-217.
[14] M. Khan, S. Anis, F. Smarandache and Y.B. Jun, Neutrosophic N-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14(6) (2017), 583-598.
[15] J. Meng, Ideals in BCK-algebras, Pure Appl. Math. (in Chinese) 2 (1986), 68{76; MR896:06009
[16] J. Meng, An ideal characterization of commutative BCI-algebras, Pusan Kyongnam Math. J. 9(1) (1993),
1-6.
[17] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
[18] M. Mohseni Takallo, R.A. Borzooei and Y.B. Jun, MBJ-neutrosophic structures and its applications in
BCK/BCI-algebras, Neutrosophic Sets and Systems, 23 (2018), 72-84.
[19] G. Muhiuddin, A.N. Al-Kenani, E.H. Roh and Y.B. Jun, Implicative neutrosophic quadruple BCK-algebras
and ideals, Symmetry (2019), 11, 277; doi:10.3390/sym11020277.
[20] G. Muhiuddin, F. Smarandache and Y.B. Jun, Neutrosophic quadruple ideals in neutrosophic quadruple
BCI-algebras, Neutrosophic Sets and Systems 25 (2019), 161{173.
[21] M.A.  Ozturk and Y.B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J.
Inter. Math. Virtual Inst. 8 (2018), 1{17.
[22] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning,
Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition
online).
[23] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutro-
sophic Probability, American Reserch Press, Rehoboth, NM, 1999.
[24] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math.
24(3) (2005), 287-297.
[25] F. Smarandache, Neutrosophic quadruple numbers, re ned neutrosophic quadruple numbers, absorbance
law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015),
96-98.
[26] S.Z. Song, F. Smarandache and Y.B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Informa-
tion (2017), 8, 130.