An investigation on regular relations of universal hyperalgebras

Document Type: Research Paper

Authors

1 Department of Mathematics, Persian Gulf University, Bushehr, 75169, Iran

2 Department of Mathematics Yazd University Yazd, Iran

10.29252/asta.5.1.1

Abstract

In this paper, by considering the notion of $\Sigma$-hyperalgebras for an arbitrary signature $\Sigma$, we study the notions of regular and strongly regular relations on a $\Sigma$-hyperalgebra, $\mathfrak{A}$. We show that each regular relation which contains a strongly regular relation is a strongly regular relation. Then we concentrate on the connection between the fundamental relation of $\mathfrak{A}$ and the set of complete parts of $\mathfrak{A}$.

Keywords


[1] G. Birkhoff, Lattice Theory, 3rd edition. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, (1967).
[2] P. Corsini, Contributo alla teoria degli ipergruppi, Atti Soc. Pelor. Sc. Mat. Fis. Nat. Messina, Messina, Italy, (1980), pp. 1-22.
[3] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer, Dordrecht, (2003).
[4] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, (2007).
[5] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci., 30(2) (2006), 165-174.
[6] B. Davvaz and W. A. Dudek. S. Mirvakili, Neutral elements, fundamental relations and n-ary hypergroups, Internat. J. Algebra Comput., 19(4) (2009), 567-583.
[7] M. De Salvo, Feebly canonical hypergroups, J. Combinatorics, Inform. & Syst. Sci., 15 (1990), 133-150.
[8] M. Dresher and O. Ore, Theory of multigroups, Amer. J. Math., 60 (1938), 705-733.
[9] P. Dwinger, Introduction to Boolean Algebras, Wrzburg, (1971).
[10] M. M. Ebrahimi, A. Karimi and M. Mahmoudi, On quotient and isomorphism theorems of universal hyperalgebras, Ital. J. Pure Appl. Mat, 18 (2005), 9-22.
[11] G. Gratzer, A representation theorem for multi-algebras, Arch. Math., 3 (1962), 452-456.
[12] G. Gratzer, Universal Algebra, Second edition, Springer-Verlag, (1979).
[13] G.E. Hansoul, A subdirect decomposition theorem for multialgebras, Algebra Universalis, 16 (1983), 275-281.
[14] H. Hoft and P. E. Howard, Representing multi-algebras by algebras, the axiom of choice, and the axiom of
dependent choice, Algebra Universalis, 13 (1981), 69-77.
[15] M. Koskas, Groupoids, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49(9) (1970), 155-192.
[16] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European J. Combinatorics, 29 (2008), 1207-1218.
[17] V. Leoreanu-Fotea, Contributions to the study of the heart of a hypergroup, Doctoral Thesis: Babes-Bolyai University, Cluj-Napoca, Romania, (1998).
[18] F. Marty, Surune generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, (1934) 45-49.
[19] R. Migliorato, On the complete hypergroups, Rivista diMatematica Pura ed Applicata, 14 (1994), 21-32.
[20] C. Pelea, On the fundumental relation of a multialgebra, Ital. J. Pure Appl. Mat., 10 (2001), 327-342.
[21] C. Pelea, Identities and multialgebras, Ital. J. Pure Appl. Mat., 15 (2004), 83-92.
[22] C. Pelea and I. Purdea, Multialgebras, universal algebras and identities, J. Aust. Math. Soc., 81 (2006), 121-139.
[23] H. E. Pickett, Homomorphisms and subalgebras of multialgebras, Paci c J. Math., 21 (1967), 327-342.
[24] S. Rasouli and B. Davvaz, Lattices derived from hyperlattices, Comm. Algebra, 38(8) (2010), 2720-2737.
[25] S. Rasouli and B. Davvaz, Construction and spectral topology on hyperlattices, Mediterr. J. Math., 7 (2010), 249-262.
[26] S. Rasouli and B. Davvaz, Homomorphism, ideals and binary relations on hyper-MV algebras, J. of Mult-Valued Logics & Soft Computing, 17 (2011), 47-68.
[27] S. Rasouli, D. Heydari and B. Davvaz, eta-relations and transitivity conditions of eta on hyper-MV algebras, J. of Mult-Valued Logics & Soft Computing, 15 (2009), 517-524.
[28] S. Rasouli, D. Heydari and B. Davvaz, relations and transitivity conditions of on hyper-BCK algebras, Hacettepe Journal of Mathematics and Statistics, 39(4) (2010), 461-469.
[29] S. Rasouli, D. Heydari and B. Davvaz, An investigation on homomorphisms and subhyperalgebras of hyperalgebras, Hacettepe Journal of Mathematics and Statistics, 43(6) (2014), 971-984.
[30] D. Schweigert, Congruence relations of multialgebras, Discrete Math., 53 (1985), 249-253.
[31] Y. Sureau, Contribution a la thorie des hypergroupes ethypergroupes operant transivement sur un ensemble,
Doctoral Thesis, (1980).