

Journal of Algebraic Structures and Their Applications

ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 1 No. (2016), pp 53-61.

THE CONCEPT OF LOGIC ENTROPY ON D-POSETS

UOSEF MOHAMMADI

Communicated by B. Davvaz

ABSTRACT. In this paper, a new invariant called *logic entropy* for dynamical systems on a D-poset is introduced. Also, the *conditional logical entropy* is defined and then some of its properties are studied. The invariance of the *logic entropy* of a system under isomorphism is proved. At the end, the notion of an *m*-generator of a dynamical system is introduced and a version of the Kolmogorov-Sinai theorem is given.

1. Introduction

Entropy plays an important role, as a mathematical device, in a varieaty of problem areas, includying physics, information theory, biology, chemistry and others. This notion is a useful tool in studing of dynamical systems and their isomorphism. We may have different versions of the definition of the entropy, depending on the conditions of the discussed problem [5, 6, 7]. To study noncompatible random events in mathematical model, in 1936, G. Birkhoff and J. Von Neumann gave a basis of quantum mathematics, called quantum logic [1]. Kopka and Chovanec, introduced D-posets as an axiomatic model for quantum logics [3]. In this paper, with the help of a state on a D-poset the notion of logic

 $\operatorname{MSC}(2010) \colon$ Primary: 03G12, 06C15 Secondary: 37A35.

Keywords: D-poset, logic entropy, dynamical system, isomorphism, m-generator.

Received: 5 April 2016, Accepted: 12 March 2017.

*Corresponding author

© 2016 Yazd University.

entropy and conditional logical entropy is introduced. Also, by using a bijective mapping between two dynamical systems, the concept of their isomorphism is defined and then it is shown that the logic entropy of dynamical systems is isomorphism invariant. Finally, a version of the Kolmogorov-Sinai theorem is given.

2. Preliminaries

In this section we recall the basic notions on D-posets.

Definition 2.1. Effect algebra is a system (E, +, 0, 1), where 0, 1 are distinguished elements of E and + is a partial binary operation on E such that

- 1. a + b = b + a if one side is defined;
- 2. (a+b)+c=a+(b+c) if one side is defined;
- 3. for every $a \in E$ there exsits a unique a^{\perp} with $a + a^{\perp} = 1$;
- 4. if a + 1 is defined then a = 0.

Every effect algebra bears a natural partial ordering given by \leq if and only if b = a + c for some $c \in E$. The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. In every effect algebra, a partial subtraction—can be defined as follows:

a-b exists and is equal to c if and only if a=b+c.

The system $(E, \leq, -, 0, 1)$ so obtained is a D-poset defined by Kopka and Chovanec [3].

Definition 2.2. The structure $(D, \leq, -, 0, 1)$ is called D-poset if the relation \leq is a partial ordering on D, 0 is the smallest and 1 is the largest element on D and - is a partial binary operation satisfying the following conditions:

- 1. b-a is defined if and only if $a \leq b$;
- 2. if $a \le b$ then $b a \le b$ and b (b a) = a;
- 3. $a \le b \le c \Rightarrow c b \le c a, (c a) (c b) = b a.$

For any element a in a D-poset D, the element 1-a is called the orthosupplement of a and is denoted by a^{\perp} .

Example 2.3. Let H be a Hilbert space. A positive Hermitian operator A on H such that $O \le A \le I$, where O and I are operators on H defined by the formulas Ox = 0, Ix = x for any $x \in H$, is said to be an effect. A system E(H) of effects closed with respect to the difference B - A of operators $A, B \in E(H), A \le B$, is a D-poset.

Lemma 2.4. Let D be a D-poset and $a, b, c \in D$. The following assertions are true:

- 1. b-a is defined if and only if $a \leq b$;
- 2. if $a \le b$ then $b a \le b$ and b (b a) = a;
- 3. $a \le b \le c \Rightarrow c b \le c a, (c a) (c b) = b a;$
- 4. a 0 = a for all $a \in D$;
- 5. a a = 0 for all $a \in D$.

Proof. See [3].

Definition 2.5. Let $(D, \leq, -, 0, 1)$ be a D-poset. Define a partial binary operation \oplus and a binary operation \odot as follows, for any $a, b \in D$.

$$a \oplus b = (a^{\perp} - b)^{\perp}$$
 if $a \leq b^{\perp}$.

and

$$a \odot b == \begin{cases} a - b^{\perp} & \text{if } a^{\perp} \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2.6. A state m on a D-poset D is a mapping $m:D\longrightarrow [0,1]$ such that for all $a,b,a_n\in D$.

- 1. m(1) = 1;
- 2. if $a \leq b$ then $m(a) \leq m(b)$;
- 3. if $a \le b$ then m(b a) = m(b) m(a);
- 4. $a_n \nearrow a \Longrightarrow m(a_n) \nearrow m(a)$.

The notation " $a_n \nearrow a$ " which stands for a_n is a nondecreasing sequence and $a = \bigoplus_{n \in \mathbb{N}} a_n$. The state m is faithful if m(a) = 0 implies a = 0 for any $a \in M$.

Definition 2.7. Two elements $a, b \in D$ are orthogonal if $a \leq b^{\perp}$, and is denoted by $a \perp b$.

A finite subset $\xi = \{a_1, a_2, ..., a_n\}$ of elements of a D-poset D is said to be \oplus -orthogonal if and only

if

$$\bigoplus_{i=1}^{k} a_i \perp a_{k+1}$$
 for $k = 1, 2, ..., n-1$.

Definition 2.8. A finite collection $\xi = \{a_1, a_2, ..., a_n\}$ of elements of a D-poset D is said to be a partition of D if and only if

- 1. ξ is \oplus -orthogonal subset;
- 2. $m(\bigoplus_{i=1}^{n} a_i) = 1$.

Definition 2.9. Suppose $\xi = \{a_1, ..., a_n\}$ be any finite partition of D corresponding to a state m and $b \in D$. We say that the state m has Bayes' property if

$$m(\bigoplus_{i=1}^{n} (a_i \odot b)) = m(b).$$

We can easily prove that if $\xi = \{a_1, ..., a_n\}$ be a finite partition of $D, b \in D$, and the state m has Bayes' property then

$$\sum_{i=1}^{n} m(b \odot a_i) = m(b).$$

Definition 2.10. Suppose $\xi = \{a_1, ..., a_n\}$ and $\eta = \{b_1, ..., b_m\}$ are two finite partitions of a D-poset D. Then we define $\xi \prec \eta$ (i.e η is a refinement of ξ if there exists a partition $\{I(1), ..., I(n)\}$ of the set $\{1, ..., m\}$ such that

$$m(a_i) = \sum_{j \in I(i)} m(b_j)$$
 $i = 1, ..., n.$

3. The Logic entropy of a partition

In this section, the concept of *logic entropy* for a finite partition on a D-poset is introduced and some of its properties are stated.

Definition 3.1. If $\xi = \{a_1, ..., a_n\}$ and $\eta = \{b_1, ..., b_m\}$ are two finite partitions of a D-poset D corresponding to a state m, then the logic entropy of ξ is the number

$$h_m(\xi) = \sum_{i=1}^n m(a_i)(1 - m(a_i)).$$

and the conditional logical entropy of ξ given η is defined by

$$h_m(\xi|\eta) = \sum_{i=1}^n \sum_{j=1}^m m(a_i \odot b_j)(m(b_j) - m(a_i \odot b_j)).$$

If $\eta = \{1\}$ then $h_m(\xi|\eta) = h_m(\eta)$. Also, it is clear that $h_m(\xi|\eta) \le h_m(\eta)$.

Definition 3.2. If $\xi = \{a_1, ..., a_n\}$ and $\eta = \{b_1, ..., b_m\}$ are two finite partitions of D. Their join is

$$\xi \nabla \eta = \{ a_i \odot b_j; a_i \in \xi, b_j \in \eta \}.$$

Theorem 3.3. Let ξ, η and ζ be finite partitions of a D-poset D corresponding to a state m. Then

$$h_m(\xi \nabla \eta | \zeta) = h_m(\xi | \zeta) + h_m(\eta | \xi \nabla \zeta).$$

Proof. By the definition we have

$$h_m(\xi \nabla \eta | \zeta) = \sum_{i,j,k} m(a_i \odot b_j \odot c_k) [(m(c_k) - m(a_i \odot b_j \odot c_k))]$$

But we may write

$$m(c_k) - m(a_i \odot b_j \odot c_k) = [m(a_i \odot c_k) - m(a_i \odot b_j \odot c_k)] + [m(c_k) - m(a_i \odot c_k)]$$

Now from Bayes' property of the state m, we have

$$\sum_{k} m(b_j \odot c_k \odot a_i) = m(b_j \odot a_k),$$

therefore

$$h_m(\xi \nabla \eta | \zeta) = h_m(\xi | \zeta) + h_m(\eta | \xi \nabla \zeta).$$

Theorem 3.4. Let ξ, η and ζ be finite partitions of a D-poset D corresponding to a state m. Then $1.h_m(\xi \nabla \eta) = h_m(\xi) + h_m(\eta | \xi);$

$$2.h_m(\xi \nabla \eta) \le h_m(\xi) + h_m(\eta);$$

$$3.h_m(\xi \nabla \eta | \zeta) \le h_m(\xi | \zeta) + h_m(\eta | \zeta).$$

Proof. 1. By Theorem 3.3 we have

$$\begin{array}{lcl} h_m(\xi \nabla \eta) & = & h_m(\xi \nabla \eta | \zeta) \\ \\ & = & h_m(\xi | \zeta) + h_m(\eta | \xi \nabla \zeta) \\ \\ & = & h_m(\xi) + h_m(\eta | \xi). \end{array}$$

2. By the part 1

$$h_m(\xi \nabla \eta) = h_m(\xi) + h_m(\eta | \xi) \le h_m(\xi) + h_m(\eta).$$

3. It is clear.

Theorem 3.5. Let ξ and η be finite partitions of a D-poset D corresponding to a state m. If $\xi \prec \eta$ then $h_m(\xi) \leq h_m(\eta)$.

Proof. It is clear.

4. Logic entropy of dynamical systems

Definition 4.1. If D is a D-poset then by a dynamical system on D we mean a triple (D, m, φ) , where $m: D \to [0, 1]$ is a state on D with the Bayes property and $\varphi: D \to D$ is a mapping satisfying the following conditions:

- 1. If $a \leq b^{\perp}$ then $\varphi(a) \leq \varphi(b)^{\perp}$ and $\varphi(a \oplus b) = \varphi(a) \oplus \varphi(b)$;
- 2. $\varphi(a \odot b) = \varphi(a) \odot \varphi(b);$
- 3. $\varphi(1) = 1$;
- 4. $m(\varphi(a)) = m(a)$ for any $a \in D$.

Theorem 4.2. Let (D, m, φ) be a dynamical system on D and ξ, η be two finite partitions of D. Then

$$h_m(\varphi(\xi)|\varphi(\eta)) = h_m(\xi|\eta).$$

Proof. It is clear.

Definition 4.3. Let (D, m, φ) be a dynamical system on D. For any finite partition ξ we define the logic entropy of φ with respect to ξ as

$$h_m(\varphi,\xi) = \lim_{n \to \infty} h_m(\nabla_{i=0}^{n-1} \varphi^i(\xi)).$$

Furthermore we define the logic entropy of dynamical system by

$$h_m(\varphi) = \sup\{h_m(\varphi, \xi); \xi \text{ is a finite partition}\}.$$

Theorem 4.4. Let (D, m, φ) be a dynamical system on D. If ξ and η be finite partitions and $\xi \prec \eta$, then

$$h_m(\varphi,\xi) \leq h_m(\varphi,\eta).$$

Proof. Follows from Theorem 3.5.

Theorem 4.5. Let (D, m, φ) be a dynamical system on D and ξ be a finite partition of D. Then

$$h_m(\varphi,\xi) = h_m(\varphi,\nabla_{j=0}^k \varphi^j(\xi)).$$

Proof.

$$h_{m}(\varphi, \nabla_{j=0}^{k} \varphi^{j}(\xi)) = \lim_{n \to \infty} h_{m}(\nabla_{i=0}^{n-1} \varphi^{i}(\nabla_{j=0}^{k} \varphi^{j}(\xi)))$$

$$= \lim_{n \to \infty} h_{m}(\nabla_{t=0}^{n+k-1} \varphi^{t}(\xi))$$

$$= \lim_{p \to \infty} h_{m}(\nabla_{t=0}^{p-1} \varphi^{t}(\xi))$$

$$= h_{m}(\varphi, \xi).$$

Theorem 4.6. Let (D, m, φ) be a dynamical system on D and ξ be a finite partition of D. Then for every natural number k

$$h_m(\varphi^k) = h_m(\varphi).$$

Proof. By Theorem 4.5 we have

$$\begin{split} h_m(\varphi^k,\xi) &= h_m(\varphi^k, \nabla_{i=0}^{k-1}\varphi^i(\xi)) \\ &= \lim_{n\to\infty} h_m(\nabla_{j=0}^{n-1}\varphi^{jk}(\nabla_{i=0}^{n-1}\varphi^i(\xi))) \\ &= \lim_{n\to\infty} h_m(\nabla_{i=0}^{nk-1}\varphi^i(\xi)) = h_m(\varphi,\xi). \end{split}$$

Definition 4.7. We say that two dynamical systems (D_1, m_1, φ_1) and (D_2, m_2, φ_2) are isomorphic if there exists a bijective map $\Psi: D_1 \to D_2$ satisfying the following conditions for each $a, b \in D_1$:

- 1. If $a \leq b^{\perp}$ then $\Psi(a) \leq \Psi(b)^{\perp}$ and $\Psi(a \oplus b) = \Psi(a) \oplus \Psi(b)$;
- 2. $\Psi(a \odot b) = \Psi(a) \odot \Psi(b)$;
- 3. $\Psi(\varphi_1(a)) = \varphi_2(\Psi(a));$
- 4. $m_1(a) = m_2(\Psi(a))$.

Theorem 4.8. Let (D_1, m_1, φ_1) and (D_2, m_2, φ_2) are isomorphic dynamical systems, then $h_m(\varphi_1) = h(\varphi_2)$, i.e., logic entropy of their dynamical systems is an isomorphism invariant.

Proof. Let (D_1, m_1, φ_1) and (D_2, m_2, φ_2) be isomorphic dynamical systems and $\Psi : D_1 \to D_2$ be the mapping representing the isomorphism of dynamical systems. Let $\xi = \{a_1, ..., a_n\}$ be a finite partition of D_1 , then $\Psi(\xi)$ is the finite partition of D_2 . Now

$$h_{m_2}(\Psi(\xi)) = \sum_{i=1}^n m_2(\Psi(a_i))(1 - m_2(\Psi(a_i)))$$
$$= \sum_{i=1}^n m_1(a_i)(1 - m_1(a_i)) = h_{m_1}(\xi).$$

Thus

$$h_{m_{2}}(\varphi_{2}, \Psi(\xi)) = \lim_{n \to \infty} h_{m_{2}}(\nabla_{i=0}^{n-1} \varphi_{2}^{i}(\Psi(\xi)))$$

$$= \lim_{n \to \infty} h_{m_{2}}(\nabla_{i=0}^{n-1} \Psi(\varphi_{1}^{i}(\xi)))$$

$$= \lim_{n \to \infty} h_{m_{2}}(\Psi(\nabla_{i=0}^{n-1} \varphi_{1}^{i}(\xi)))$$

$$= \lim_{n \to \infty} h_{m_{1}}(\nabla_{i=0}^{n-1} \varphi_{1}^{i}(\xi))$$

$$= h_{m_{1}}(\varphi_{1}, \xi).$$

5. m-Generators of dynamical systems

Definition 5.1. Let (D, m, φ) be a dynamical system on D. Then a finite partition ξ of D is called an m-generator if there exists an integer k > 0 such that

$$\eta \prec \nabla_{i=0}^k \varphi^i \xi,$$

for every finite partition η of D.

Theorem 5.2. Let (D, m, φ) be a dynamical system on D and ξ be an m-generator. Then

$$h_m(\varphi,\eta) \le h_m(\varphi,\xi),$$

for every finite partition η of D.

Proof. Since ξ is an m-generator, then for partition η there exists an integer k>0 such that

$$\eta \prec \nabla_{i=0}^k \varphi^i \xi.$$

Hence

$$h_m(\varphi, \eta) \le h_m(\varphi, \nabla_{i=0}^k \varphi^i \xi) = h_m(\varphi, \xi).$$

Now we can deduce the following version of Kolmogorov-Sinai theorem [7].

Theorem 5.3. Let (D, m, φ) be a dynamical system on D and ξ be an m-generator. Then

$$h_m(\varphi) = h_m(\varphi, \xi).$$

Proof. Obvious.

6. Concluding Remarks

In this paper, the notion of *logic entropy* of dynamical systems on a D-poset is introduced and its properties are investigated. Also, it is shown that *logic entropy* is a useful object for the classification of the dynamical systems based on isomorphism. Because, it is an invariant object under isomorphism relation. Finally, the notion of an *m*-generator of a dynamical system is introduced and a version of the Kolmogorov-Sinai theorem is stated.

References

- [1] G. Birkhoff, J. Von Neumann, The logic of quantum mechanics, Ann. Math. 37 (1936), 823–842.
- [2] M. Ebrahimi, B. Mosapour, The concept of entropy on D-posets, Cankaya University Journal of Science and Engineering, 10 (2013), 137–151.
- [3] F. Kopka and F. Chovanec, *D-posets*, Mathematica Slovaca 44 (1994), 21–34.
- [4] T. Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems (2005) 369–381.
- [5] U. Mohammadi, Weighted entropy function as an extension of the Kolmogorov-Sinai entropy, U. P. B. Sci. Series A, no. 4 (2015), 117–122.
- [6] U. Mohammadi, Relative entropy functional of relative dynamical systems, Cankaya University Journal of Science and Engineering, no. 2 (2014), 29–38.
- [7] P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.

Uosef Mohammadi

Department of Mathematics, Faculty of Science, University of Jiroft, 78671-61167, Jiroft, Iran.

 ${\tt u.mohamadi@ujiroft.ac.ir}$