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ABSTRACT. In this paper, a new invariant called logic entropy for dynamical systems on a D-poset is
introduced. Also, the conditional logical entropy is defined and then some of its properties are studied.
The invariance of the logic entropy of a system under isomorphism is proved. At the end, the notion of
an m-generator of a dynamical system is introduced and a version of the Kolmogorov-Sinai theorem is

given.

1. INTRODUCTION

Entropy plays an important role, as a mathematical device, in a varieaty of problem areas, includying
physics, information theory, biology, chemistry and others. This notion is a useful tool in studing of
dynamical systems and their isomorphism. We may have different versions of the definition of the
entropy, depending on the conditions of the discussed problem [5][6, [7]. To study noncompatible random
events in mathematical model, in 1936, G. Birkhoff and J. Von Neumann gave a basis of quantum
mathematics, called quantum logic [I]. Kopka and Chovanec, introduced D-posets as an axiomatic

model for quantum logics [3]. In this paper, with the help of a state on a D-poset the notion of logic
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entropy and conditional logical entropy is introduced. Also, by using a bijective mapping between two
dynamical systems, the concept of their isomorphism is defined and then it is shown that the logic
entropy of dynamical systems is isomorphism invariant. Finally, a version of the Kolmogorov-Sinai

theorem is given.

2. PRELIMINARIES

In this section we recall the basic notions on D-posets.

Definition 2.1. Effect algebra is a system (E,+,0,1), where 0, 1 are distinguished elements of E
and + is a partial binary operation on E such that

1. a4+ b=0b+ a if one side is defined;

2. (a+b)+c=a+ (b+c) if one side is defined;

3. for every a € E there exsits a unique a with a + a+ = 1;

4. if a + 1 is defined then a = 0.

Every effect algebra bears a natural partial ordering given by < if and only if b = a + ¢ for some
¢ € E. The poset (F, <) is bounded, 0 is the bottom element and 1 is the top element. In every effect
algebra, a partial subtraction can be defined as follows:

a — b exists and is equal to c if and only if a = b+ c.

The system (E, <,—,0,1) so obtained is a D-poset defined by Kopka and Chovanec [3].

Definition 2.2. The structure (D, <,—,0,1) is called D-poset if the relation < is a partial ordering
on D, 0 is the smallest and 1 is the largest element on D and — is a partial binary operation satisfying

the following conditions:

1. b — a is defined if and only if a < b;
2. ifa<bthenb—a<band b— (b—a)=a;
.a<b<c=c—b<c—a,(c—a)—(c—b)=b—a.

For any element a in a D-poset D, the element 1 — a is called the orthosupplement of a and is

denoted by a*.

Example 2.3. Let H be a Hilbert space. A positive Hermitian operator A on H such that O < A < [,
where O and I are operators on H defined by the formulas Ox = 0,Ix = z for any x € H, is said
to be an effect. A system E(H) of effects closed with respect to the difference B — A of operators
A,B € E(H),A < B, is a D-poset.



Alg. Struc. Appl. Vol. 3 No. 1 (2016) 53-61. 55

Lemma 2.4. Let D be a D-poset and a,b,c € D. The following assertions are true:
b — a is defined if and only if a < b;

ifa<bthenb—a<bandb— (b—a)=a;
a<b<c=c—-b<c—a,(c—a)—(c—b)=b—a;

a—0=a foralla € Dy

a—a=0 forallaeD.

AR S A

Proof. See [3]. [

Definition 2.5. Let (D,<,—,0,1) be a D-poset. Define a partial binary operation @ and a binary

operation ® as follows, for any a,b € D.
a®b=(at —b)tifa<bt.

and

a— bt ifaLgb,

0 otherwise.
Definition 2.6. A state m on a D-poset D is a mapping m : D — [0, 1] such that for all a, b, a,, € D

1. m(1) = 1;

2. if a < b then m(a) < m(b);

3. if a < b then m(b—a) = m(b) — m(a);
4. an S a = m(ay) / m(a).

The notation ”a, " a” which stands for a, is a nondecreasing sequence and a = @penan. The

state m is faithful if m(a) = 0 implies a = 0 for any a € M.

Definition 2.7. Two elements a,b € D are orthogonal if @ < b, and is denoted by a L b.
A finite subset & = {a1, ag, ...,a,} of elements of a D-poset D is said to be @—orthogonal if and only
if

@leai L oags for k=1,2,...n—1.

Definition 2.8. A finite collection £ = {aj,aq,...,a,} of elements of a D-poset D is said to be a
partition of D if and only if

1. € is @—orthogonal subset;

2. m(@}_ja;) = 1.
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Definition 2.9. Suppose £ = {ay, ..., a,} be any finite partition of D corresponding to a state m and

b € D. We say that the state m has Bayes’property if
m(Bi(a; © b)) = m(b).
We can easily prove that if £ = {aq,...,a,} be a finite partition of D,b € D, and the state m has

Bayes’property then

n

> mb® a;) =m(b).

i=1
Definition 2.10. Suppose { = {ay,...,a,} and n = {b1, ..., b, } are two finite partitions of a D-poset

D. Then we define £ < 7 (i.e 1) is a refinement of £ if there exists a partition {(1),...,I(n)} of the set
{1,...,m} such that

3. THE LOGIC ENTROPY OF A PARTITION

In this section, the concept of logic entropy for a finite partition on a D-poset is introduced and

some of its properties are stated.

Definition 3.1. If £ = {a1,...,a,} and n = {by,...,b,,} are two finite partitions of a D-poset D

corresponding to a state m, then the logic entropy of £ is the number
n
hm(§) =) m(ai)(1 — m(a;)).
i=1
and the conditional logical entropy of € given 7 is defined by

h(€l0) =D ) - mla; © by)(m(bs) — m(a; © by)).

i=1 j=1
If n = {1} then hp (&) = hm(n). Also, it is clear that hp,(£]n) < hm(n).
Definition 3.2. If ¢ = {ay,...,a,} and n = {b1, ..., by, } are two finite partitions of D. Their join is

Evn ={a; ©®bj;a; € £,bj € n}.

Theorem 3.3. Let £, and { be finite partitions of a D-poset D corresponding to a state m. Then

hm(§9n[C) = hm(§]C) + hm(n|EVC).
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Proof. By the definition we have

hn(§9m]C) = m(a; © by ® ex)[(m(cx) — m(a; © by © c)]
1,5,k

But we may write
m(ck) —m(a; © b; © ) = [m(a; © cx) — mla; © b; © cx)] + [m(cx) — mla; © )]
Now from Bayes’property of the state m, we have

Zm(bj O cx ©a;) =m(b; © ay),

therefore

hm(fwﬂf) = hm(&’() + hm(mng)'

Theorem 3.4. Let £, and ¢ be finite partitions of a D-poset D corresponding to a state m. Then

hin(§Vn) = hm (&) + him (n[€);
m(EWI) < hin(€) + him(n);
hin(§VN|C) < him(§]C) + hm(n]C).

Proof. 1. By Theorem 3.3 we have

hm(E9n) = hm(§Vn[Q)
= h(€[0) + hm(n]€VC)
= hm(€) + hm(n[€).

2. By the part 1
hin(§VN) = hn(§) + hin(l€) < hin (&) + hm(n).

3. It is clear. |

Theorem 3.5. Let £ and n be finite partitions of a D-poset D corresponding to a state m. If & < n
then hpy (&) < him(n).

Proof. It is clear. |



58 Alg. Struc. Appl. Vol. 3 No. 1 (2016) 53-61.
4. LOGIC ENTROPY OF DYNAMICAL SYSTEMS

Definition 4.1. If D is a D-poset then by a dynamical system on D we mean a triple (D, m, ¢), where
m : D — [0,1] is a state on D with the Bayes property and ¢ : D — D is a mapping satisfying the
following conditions:

1. If a < b* then p(a) < ¢(b)* and ¢(a ®b) = p(a) ® ©(b);

2. p(a©b) = p(a) © ¢(b);
3. (1) =1;
4. m(¢(a)) = m(a) for any a € D.

Theorem 4.2. Let (D, m, ) be a dynamical system on D and &, 1 be two finite partitions of D. Then

hin ()] (1)) = him(€]n).

Proof. It is clear. ]

Definition 4.3. Let (D, m, ) be a dynamical system on D. For any finite partition £ we define the
logic entropy of ¢ with respect to & as

hin(0,€) = Tim_hin (V725 0 (6))-
Furthermore we define the logic entropy of dynamical system by

him () = sup{hm(p,§£); € is a finite partition}.

Theorem 4.4. Let (D, m, ) be a dynamical system on D. If & and n be finite partitions and & < 1,
then

hn(,€) < hin (@, m).

Proof. Follows from Theorem 3.5. [ |

Theorem 4.5. Let (D, m,p) be a dynamical system on D and § be a finite partition of D. Then
hin(9,€) = hm (0, Vi_o¢? (€)).
Proof.
hm(%vé?:owj(f)) = hm hin (V ?01802( Vi= 0%’ (€)))
= Jim (T )
(ViZ0#'(9))

_ P
= lim g, (Viz
p—>00

= hn(p,6).
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Theorem 4.6. Let (D, m, ) be a dynamical system on D and & be a finite partition of D. Then for

every natural number k

Proof. By Theorem 4.5 we have

hin(95,6) = hm(¢", Vi@ (€))
= Jim b (V32507150 9'(9))

= lim hy(V VIETL6H(€)) = hun(, €).

Definition 4.7. We say that two dynamical systems (Dj,m1, 1) and (Dg, ma, p2) are isomorphic if
there exists a bijective map ¥ : D; — D» satisfying the following conditions for each a,b € Dy:

1. If a < b* then ¥(a) < U(b)* and ¥(a @ b) = V(a) ® ¥(b);

2. ¥(a®b) =Y(a) ®Y(b);

3. U(pi(a)) = p2(¥(a));

4. my(a) = ma(¥(a)).

Theorem 4.8. Let (D1, m1,p1) and (D2, ma,p2) are isomorphic dynamical systems, then hpy,(¢1) =

h(p2), i.e., logic entropy of their dynamical systems is an isomorphism invariant.

Proof. Let (D1, m1,¢1) and (D2, ma, p2) be isomorphic dynamical systems and ¥ : D; — Dj be the
mapping representing the isomorphism of dynamical systems. Let £ = {aq, ..., a,} be a finite partition

of Dy, then ¥(¢) is the finite partition of Dy. Now

hin, (W(E)) = Zm2 )L = ma(¥(ai))

= Zml a;)(1 —mi(as)) = hm, (§).

=1

Thus
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Bana (93, W(E)) = T b, (VIS 0" (9(£))

(v (
= hm ms (V120 W (01°(€)))
= hm P (W (V72 09012(5)))

(v )

= hm P,y

= hm1 (3017 g)

10901()

5. m-GENERATORS OF DYNAMICAL SYSTEMS

Definition 5.1. Let (D, m,¢) be a dynamical system on D. Then a finite partition £ of D is called

an m-generator if there exsits an integer k£ > 0 such that

L/ v§=0¢i§7

for every finite partition n of D.

Theorem 5.2. Let (D, m, ) be a dynamical system on D and & be an m-generator. Then
him(#,1) < han(9,€),
for every finite partition n of D.
Proof. Since ¢ is an m-generator, then for partition 7 there exsists an integer k£ > 0 such that
n < Vgt

Hence

han(0.1) < han(0, Vi_g©'€) = hn (0, €).

Now we can deduce the following version of Kolmogorov-Sinai theorem [7].
Theorem 5.3. Let (D, m, ) be a dynamical system on D and & be an m-generator. Then

hm () = hm(g,§).

Proof. Obvious. |
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6. CONCLUDING REMARKS

In this paper, the notion of logic entropy of dynamical systems on a D-poset is introduced and its
properties are investigated. Also, it is shown that logic entropy is a useful object for the classification
of the dynamical systems based on isomorphism. Because, it is an invariant object under isomorphism
relation. Finally, the notion of an m-generator of a dynamical system is introduced and a version of

the Kolmogorov-Sinai theorem is stated.
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