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THE CONCEPT OF LOGIC ENTROPY ON D-POSETS
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Abstract. In this paper, a new invariant called logic entropy for dynamical systems on a D-poset is

introduced. Also, the conditional logical entropy is defined and then some of its properties are studied.

The invariance of the logic entropy of a system under isomorphism is proved. At the end, the notion of

an m-generator of a dynamical system is introduced and a version of the Kolmogorov-Sinai theorem is

given.

1. Introduction

Entropy plays an important role, as a mathematical device, in a varieaty of problem areas, includying

physics, information theory, biology, chemistry and others. This notion is a useful tool in studing of

dynamical systems and their isomorphism. We may have different versions of the definition of the

entropy, depending on the conditions of the discussed problem [5, 6, 7].To study noncompatible random

events in mathematical model, in 1936, G. Birkhoff and J. Von Neumann gave a basis of quantum

mathematics, called quantum logic [1]. Kopka and Chovanec, introduced D-posets as an axiomatic

model for quantum logics [3]. In this paper, with the help of a state on a D-poset the notion of logic
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entropy and conditional logical entropy is introduced. Also, by using a bijective mapping between two

dynamical systems, the concept of their isomorphism is defined and then it is shown that the logic

entropy of dynamical systems is isomorphism invariant. Finally, a version of the Kolmogorov-Sinai

theorem is given.

2. preliminaries

In this section we recall the basic notions on D-posets.

Definition 2.1. Effect algebra is a system (E,+, 0, 1), where 0, 1 are distinguished elements of E

and + is a partial binary operation on E such that

1. a+ b = b+ a if one side is defined;

2. (a+ b) + c = a+ (b+ c) if one side is defined;

3. for every a ∈ E there exsits a unique a⊥ with a+ a⊥ = 1;

4. if a+ 1 is defined then a = 0.

Every effect algebra bears a natural partial ordering given by ≤ if and only if b = a + c for some

c ∈ E. The poset (E,≤) is bounded, 0 is the bottom element and 1 is the top element. In every effect

algebra, a partial subtraction can be defined as follows:

a− b exists and is equal to c if and only if a = b+ c.

The system (E,≤,−, 0, 1) so obtained is a D-poset defined by Kopka and Chovanec [3].

Definition 2.2. The structure (D,≤,−, 0, 1) is called D-poset if the relation ≤ is a partial ordering

on D, 0 is the smallest and 1 is the largest element on D and − is a partial binary operation satisfying

the following conditions:

1. b− a is defined if and only if a ≤ b;
2. if a ≤ b then b− a ≤ b and b− (b− a) = a;

3. a ≤ b ≤ c⇒ c− b ≤ c− a, (c− a)− (c− b) = b− a.

For any element a in a D-poset D, the element 1 − a is called the orthosupplement of a and is

denoted by a⊥.

Example 2.3. Let H be a Hilbert space. A positive Hermitian operator A on H such that O ≤ A ≤ I,

where O and I are operators on H defined by the formulas Ox = 0, Ix = x for any x ∈ H, is said

to be an effect. A system E(H) of effects closed with respect to the difference B − A of operators

A,B ∈ E(H), A ≤ B, is a D-poset.
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Lemma 2.4. Let D be a D-poset and a, b, c ∈ D. The following assertions are true:

1. b− a is defined if and only if a ≤ b;
2. if a ≤ b then b− a ≤ b and b− (b− a) = a;

3. a ≤ b ≤ c⇒ c− b ≤ c− a, (c− a)− (c− b) = b− a;

4. a− 0 = a for all a ∈ D;

5. a− a = 0 for all a ∈ D.

Proof. See [3]. �

Definition 2.5. Let (D,≤,−, 0, 1) be a D-poset. Define a partial binary operation ⊕ and a binary

operation � as follows, for any a, b ∈ D.

a⊕ b = (a⊥ − b)⊥ if a ≤ b⊥.

and

a� b ==

 a− b⊥ if a⊥ ≤ b,

0 otherwise.

Definition 2.6. A state m on a D-poset D is a mapping m : D −→ [0, 1] such that for all a, b, an ∈ D
:

1. m(1) = 1;

2. if a ≤ b then m(a) ≤ m(b);

3. if a ≤ b then m(b− a) = m(b)−m(a);

4. an ↗ a =⇒ m(an)↗ m(a).

The notation ”an ↗ a” which stands for an is a nondecreasing sequence and a = ⊕n∈Nan. The

state m is faithful if m(a) = 0 implies a = 0 for any a ∈M .

Definition 2.7. Two elements a, b ∈ D are orthogonal if a ≤ b⊥, and is denoted by a ⊥ b.
A finite subset ξ = {a1, a2, ..., an} of elements of a D-poset D is said to be ⊕−orthogonal if and only

if

⊕k
i=1ai ⊥ ak+1 for k = 1, 2, ..., n− 1.

Definition 2.8. A finite collection ξ = {a1, a2, ..., an} of elements of a D-poset D is said to be a

partition of D if and only if

1. ξ is ⊕−orthogonal subset;

2. m(⊕n
i=1ai) = 1.
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Definition 2.9. Suppose ξ = {a1, ..., an} be any finite partition of D corresponding to a state m and

b ∈ D. We say that the state m has Bayes’property if

m(⊕n
i=1(ai � b)) = m(b).

We can easily prove that if ξ = {a1, ..., an} be a finite partition of D, b ∈ D, and the state m has

Bayes’property then
n∑

i=1

m(b� ai) = m(b).

Definition 2.10. Suppose ξ = {a1, ..., an} and η = {b1, ..., bm} are two finite partitions of a D-poset

D. Then we define ξ ≺ η (i.e η is a refinement of ξ if there exists a partition {I(1), ..., I(n)} of the set

{1, ...,m} such that

m(ai) =
∑
j∈I(i)

m(bj) i = 1, ..., n.

3. The Logic entropy of a partition

In this section, the concept of logic entropy for a finite partition on a D-poset is introduced and

some of its properties are stated.

Definition 3.1. If ξ = {a1, ..., an} and η = {b1, ..., bm} are two finite partitions of a D-poset D

corresponding to a state m, then the logic entropy of ξ is the number

hm(ξ) =
n∑

i=1

m(ai)(1−m(ai)).

and the conditional logical entropy of ξ given η is defined by

hm(ξ|η) =
n∑

i=1

m∑
j=1

m(ai � bj)(m(bj)−m(ai � bj)).

If η = {1} then hm(ξ|η) = hm(η). Also, it is clear that hm(ξ|η) ≤ hm(η).

Definition 3.2. If ξ = {a1, ..., an} and η = {b1, ..., bm} are two finite partitions of D. Their join is

ξOη = {ai � bj ; ai ∈ ξ, bj ∈ η}.

Theorem 3.3. Let ξ, η and ζ be finite partitions of a D-poset D corresponding to a state m. Then

hm(ξOη|ζ) = hm(ξ|ζ) + hm(η|ξOζ).
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Proof. By the definition we have

hm(ξOη|ζ) =
∑
i,j,k

m(ai � bj � ck)[(m(ck)−m(ai � bj � ck)]

But we may write

m(ck)−m(ai � bj � ck) = [m(ai � ck)−m(ai � bj � ck)] + [m(ck)−m(ai � ck)]

Now from Bayes’property of the state m, we have

∑
k

m(bj � ck � ai) = m(bj � ak),

therefore

hm(ξOη|ζ) = hm(ξ|ζ) + hm(η|ξOζ).

�

Theorem 3.4. Let ξ, η and ζ be finite partitions of a D-poset D corresponding to a state m. Then

1.hm(ξOη) = hm(ξ) + hm(η|ξ);
2.hm(ξOη) ≤ hm(ξ) + hm(η);

3.hm(ξOη|ζ) ≤ hm(ξ|ζ) + hm(η|ζ).

Proof. 1. By Theorem 3.3 we have

hm(ξOη) = hm(ξOη|ζ)

= hm(ξ|ζ) + hm(η|ξOζ)

= hm(ξ) + hm(η|ξ).

2. By the part 1

hm(ξOη) = hm(ξ) + hm(η|ξ) ≤ hm(ξ) + hm(η).

3. It is clear. �

Theorem 3.5. Let ξ and η be finite partitions of a D-poset D corresponding to a state m. If ξ ≺ η

then hm(ξ) ≤ hm(η).

Proof. It is clear. �
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4. Logic entropy of dynamical systems

Definition 4.1. If D is a D-poset then by a dynamical system on D we mean a triple (D,m,ϕ), where

m : D → [0, 1] is a state on D with the Bayes property and ϕ : D → D is a mapping satisfying the

following conditions:

1. If a ≤ b⊥ then ϕ(a) ≤ ϕ(b)⊥ and ϕ(a⊕ b) = ϕ(a)⊕ ϕ(b);

2. ϕ(a� b) = ϕ(a)� ϕ(b);

3. ϕ(1) = 1;

4. m(ϕ(a)) = m(a) for any a ∈ D.

Theorem 4.2. Let (D,m,ϕ) be a dynamical system on D and ξ, η be two finite partitions of D. Then

hm(ϕ(ξ)|ϕ(η)) = hm(ξ|η).

Proof. It is clear. �

Definition 4.3. Let (D,m,ϕ) be a dynamical system on D. For any finite partition ξ we define the

logic entropy of ϕ with respect to ξ as

hm(ϕ, ξ) = lim
n→∞

hm(On−1
i=0 ϕ

i(ξ)).

Furthermore we define the logic entropy of dynamical system by

hm(ϕ) = sup{hm(ϕ, ξ); ξ is a finite partition}.

Theorem 4.4. Let (D,m,ϕ) be a dynamical system on D. If ξ and η be finite partitions and ξ ≺ η,

then

hm(ϕ, ξ) ≤ hm(ϕ, η).

Proof. Follows from Theorem 3.5. �

Theorem 4.5. Let (D,m,ϕ) be a dynamical system on D and ξ be a finite partition of D. Then

hm(ϕ, ξ) = hm(ϕ,Ok
j=0ϕ

j(ξ)).

Proof.

hm(ϕ,Ok
j=0ϕ

j(ξ)) = lim
n→∞

hm(On−1
i=0 ϕ

i(Ok
j=0ϕ

j(ξ)))

= lim
n→∞

hm(On+k−1
t=0 ϕt(ξ))

= lim
p→∞

hm(Op−1
t=0ϕ

t(ξ))

= hm(ϕ, ξ).
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�

Theorem 4.6. Let (D,m,ϕ) be a dynamical system on D and ξ be a finite partition of D. Then for

every natural number k

hm(ϕk) = hm(ϕ).

Proof. By Theorem 4.5 we have

hm(ϕk, ξ) = hm(ϕk,Ok−1
i=0 ϕ

i(ξ))

= lim
n→∞

hm(On−1
j=0ϕ

jk(On−1
i=0 ϕ

i(ξ)))

= lim
n→∞

hm(Onk−1
i=0 ϕi(ξ)) = hm(ϕ, ξ).

�

Definition 4.7. We say that two dynamical systems (D1,m1, ϕ1) and (D2,m2, ϕ2) are isomorphic if

there exists a bijective map Ψ : D1 → D2 satisfying the following conditions for each a, b ∈ D1:

1. If a ≤ b⊥ then Ψ(a) ≤ Ψ(b)⊥ and Ψ(a⊕ b) = Ψ(a)⊕Ψ(b);

2. Ψ(a� b) = Ψ(a)�Ψ(b);

3. Ψ(ϕ1(a)) = ϕ2(Ψ(a));

4. m1(a) = m2(Ψ(a)).

Theorem 4.8. Let (D1,m1, ϕ1) and (D2,m2, ϕ2) are isomorphic dynamical systems, then hm(ϕ1) =

h(ϕ2), i.e., logic entropy of their dynamical systems is an isomorphism invariant.

Proof. Let (D1,m1, ϕ1) and (D2,m2, ϕ2) be isomorphic dynamical systems and Ψ : D1 → D2 be the

mapping representing the isomorphism of dynamical systems. Let ξ = {a1, ..., an} be a finite partition

of D1, then Ψ(ξ) is the finite partition of D2. Now

hm2(Ψ(ξ)) =

n∑
i=1

m2(Ψ(ai))(1−m2(Ψ(ai))

=
n∑

i=1

m1(ai)(1−m1(ai)) = hm1(ξ).

Thus
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hm2(ϕ2,Ψ(ξ)) = lim
n→∞

hm2(On−1
i=0 ϕ2

i(Ψ(ξ)))

= lim
n→∞

hm2(On−1
i=0 Ψ(ϕ1

i(ξ)))

= lim
n→∞

hm2(Ψ(On−1
i=0 ϕ1

i(ξ)))

= lim
n→∞

hm1(On−1
i=0 ϕ1

i(ξ))

= hm1(ϕ1, ξ).

�

5. m-Generators of dynamical systems

Definition 5.1. Let (D,m,ϕ) be a dynamical system on D. Then a finite partition ξ of D is called

an m-generator if there exsits an integer k > 0 such that

η ≺ Ok
i=0ϕ

iξ,

for every finite partition η of D.

Theorem 5.2. Let (D,m,ϕ) be a dynamical system on D and ξ be an m-generator. Then

hm(ϕ, η) ≤ hm(ϕ, ξ),

for every finite partition η of D.

Proof. Since ξ is an m-generator, then for partition η there exsists an integer k > 0 such that

η ≺ Ok
i=0ϕ

iξ.

Hence

hm(ϕ, η) ≤ hm(ϕ,Ok
i=0ϕ

iξ) = hm(ϕ, ξ).

�

Now we can deduce the following version of Kolmogorov-Sinai theorem [7].

Theorem 5.3. Let (D,m,ϕ) be a dynamical system on D and ξ be an m-generator. Then

hm(ϕ) = hm(ϕ, ξ).

Proof. Obvious. �
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6. Concluding Remarks

In this paper, the notion of logic entropy of dynamical systems on a D-poset is introduced and its

properties are investigated. Also, it is shown that logic entropy is a useful object for the classification

of the dynamical systems based on isomorphism. Because, it is an invariant object under isomorphism

relation. Finally, the notion of an m-generator of a dynamical system is introduced and a version of

the Kolmogorov-Sinai theorem is stated.

References

[1] G. Birkhoff, J. Von Neumann, The logic of quantum mechanics, Ann. Math. 37 (1936), 823–842.

[2] M. Ebrahimi, B. Mosapour, The concept of entropy on D-posets, Cankaya University Journal of Science and Engi-

neering, 10 (2013), 137–151.

[3] F. Kopka and F. Chovanec, D-posets, Mathematica Slovaca 44 (1994), 21–34.

[4] T. Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems (2005) 369–381.

[5] U. Mohammadi, Weighted entropy function as an extension of the Kolmogorov-Sinai entropy, U. P. B. Sci. Series A,

no. 4 (2015), 117–122.

[6] U. Mohammadi, Relative entropy functional of relative dynamical systems, Cankaya University Journal of Science

and Engineering, no. 2 (2014), 29–38.

[7] P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.

Uosef Mohammadi

Department of Mathematics, Faculty of Science,

University of Jiroft, 78671-61167, Jiroft, Iran.

u.mohamadi@ujiroft.ac.ir


	1. Introduction
	2. preliminaries 
	3. The Logic entropy of a partition
	4. Logic entropy of dynamical systems
	5.  m-Generators of dynamical systems
	6. Concluding Remarks
	References

