The structure of a pair of nilpotent Lie algebras

Document Type : Research Paper

Authors

Islamic Azad University

Abstract

Assume that (N,L), is a pair of finite dimensional nilpotent Lie algebras, in which L is non-abelian and N
is an ideal in L and also M(N,L) is the Schur multiplier of the pair (N,L). Motivated by characterization of the pairs (N,L) of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpotent Lie algebras and generalize results for a pair of non-abelian nilpotent Lie algebras.

Keywords


[1] J. M. Ancochea-Bermdez and M. Goze, Classi cation des algbres de Lie nilpotentes de dimension 7, Arch.
Math., 52(2) (1989), 157-185.
[2] H. Arabyani, F. Saeedi, M. R. R. Moghaddam and E. Khamseh, On characterizing a pair of nilpotent Lie
algebras by their Schur multipliers, Comm. Alg, 42 (2014), 5474-5483.
[3] P. Batten, Multipliers and covers of Lie algebras, PhD thesis, North Carolina State university, (1993).
[4] P. Batten, K. Moneyhum and E. Stitzinger, On characterizing nilpo- tent Lie algebras by their multipliers,
Comm. Algebra, 24(14) (1996), 4319-4330.
[5] P. Batten, E. Stitzinger, On covers of Lie algebras, Comm. Algebra, 24(14), (1996), 4301-4317.
[6] L. R. Bosko, On Schur multipliers of Lie algebras and groups of maximal class,internat. J. Algebra comput,
20(6), (2010), 807-821.
[7] S. Cicalo, W. A. de Graaf and C. Schneider, Six- dimensional nilpotent Lie algebras, Linear Algebra Appl.,
436(1) (2012), 163-189.
[8] J. Dixmier, Sur les reprsentations unitaires des groupes de Lie nilpo- tents III, Canad. J. Math., 10 (1958),
321-348.
[9] G. Ellis, A non-abelian tensor square of Lie algebras, Glasgow Math. J. (39) (1991), 101{120.
[10] K. Erdmann and M. Wildon, Introduction to Lie Algebras, Springer undergraduate Mathematics series,
2006.
[11] P. Hardy, On characterizing nilpotent Lie algebras by their multipliers (III), Comm. Algebra. 33 (2005),
4205-4210.
[12] P. Hardy and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, t(L) = 3; 4; 5; 6,
Comm. Algebra. 26(11) (1998), 3527-3539.
[13] M. R. R. Moghaddam, A. R. Salemkar and K. Chiti, Some properties on the Schur multiplier of a pair of
groups, J. Algebra 312 (2007), 1-8.
[14] M. R. R. Moghaddam, A. R. Salemkar and T. Karimi, Some inequalities for the order of Schur multiplier
of a pair of groups, Comm. Algebra 36 (2008), 1-6.
[15] K. Moneyhun, Isoclinism in Lie algebras, Algebra Groups Geom., 11 (1994), 9-22.
[16] V. V. Morozov, Classi cation des algebras de Lie nilpotents de dimension 6. Izv. Vyssh. Ucheb. Zar, 4
(1958), 161{171.
[17] P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras,cent. Eur. J. Math., 9(1)
(2011), 57-64.
[18] P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra,
39 (2011), 1293-1297.
[19] M.R. Rismanchian and M. Araskhan, Some inequalities for the dimension of the Schur multilier of a pair
of (nilpotent) Lie algebras, J. Algebra , 352 (2012), 173-179.
[20] M. R. Rismanchian and M. Araskhan, Some properties on the Schur multiplier of a pair of Lie algebras,
J. Algebra Appl., 11 (2012), 1250011(9 pages).
[21] D. J. S. Robinson, A Course in the Theory of Groups, Springer Verlag, New York, 1982.
[22] F. Saeedi, A. R. Salemkar and B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair
of nilpotent Lie algebras, J. Lie Theory, 21 (2011), 491-498.
[23] F. Saeedi, H. Arabyani and P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras
(II),(submitted).
[24] A. R. Salemkar, V. Alamian, H. Mohammadzadeh, Some properties of the Schur multiplier and covers of
Lie algebras, Comm. Algebra. 36(2) (2008), 697-707.
[25] A. R. Salemkar and S. Alizadeh Niri, Bounds for the dimension of the Schur multiplier of a pair of nilpotent Lie algebras, Asian-Eur. J. Math. 5 (2012), 1250059(9 pages).
[26] B. Yankosky, On the multiplier of a Lie algebra, J. Lie Theory, 13(1) (2003), 1-6.