When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?

Document Type : Research Paper

Authors

Saurashtra University, Rajkot, India

Abstract

 The rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. Let R be a ring. Let A(R) denote the set of all annihilating ideals of R and let A(R)=A(R){(0)}. The annihilating-ideal graph of R, denoted by AG(R)  is an undirected simple graph whose vertex set is A(R) and distinct vertices I,J are joined by an edge in this graph if and only if IJ=(0). The aim of this article is to classify rings  R such that (AG(R))c ( that is,  the complement of AG(R))   is connected and admits a cut vertex.

Keywords


[1] G Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr, and F. Shaiveisi, The classi cation of
annihilating-ideal graph of commutative rings, Alg. Colloquium, 21, 249 (2014), doi:10.1143/S1005386714000200.
[2] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, and F. Shaiveisi, On the coloring of the annihilating-
ideal graph of a commutative ring, Discrete Math., 312 (2012), 2620-2625.
[3] .D.F. Anderson, M.C. Axtell, J.A. Stickles Zero-divisor graphs in commutative rings, in Commutative
Algebra, Noetherian and Non-Noetherian perspectives, M. Fontana, S.E. Kabbaj, B. Olberding, and I.
Swanson (Editors), Springer-Verlag, New York, 2011, 23-45.
[4] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Alg. 217 (1999),
434-447.
[5] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mas-
sachusetts, 1969.
[6] M.C. Axtell, N. Baeth, and J.A. Stickles, Cut vertices in zero-divisor graphs of nite commutative rings,
Comm. Alg., 39(6) (2011), 2179-2188.
[7] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, New york,
2000.
[8] I. . Beck, Coloring of commutative rings, J. Alg. 116 (1988), 208-226.
[9] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Alg. Appl. 10 (2011),
727-739.
[10] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Alg. Appl.10 (2011),
741-753.
[11] B. Cotee, C. Ewing, M. Huhn, C.M. Plaut, and E.D. Weber, Cut-Sets in zero-divisor graphs of nite
commutative rings, Comm. Alg. 39(8) (2011), 2849-2861.
[12] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer.
Math. Soc. 79(1) (1980), 13-16.
[13] W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158(2) (1971),
273-284.
[14] W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34(1) (1972),
73-74.
[15] M. Hadian, Unit action and geometric zero-divisor ideal graph, Comm. Alg. 40 (2012), 2920-2930.
[16] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[17] T. Tamizh Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss.
Math. Gen. Alg. Appl. 35 (2015), 195-204.
[18] S. Visweswaran, Some results on the complement of the zero-divisor graph of a commutative ring, J. Alg.
Appl. 10(3) (2011), 573-595.
[19] S. Visweswaran, Some properties of the complement of the zero-divisor graph of a commutative ring, ISRN Alg. 2011 (2011), Article ID 591041, 24 pages.
[20] S. Visweswaran and Hiren D. Patel, Some results on the complement of the annihilating ideal graph of a
commutative ring, J. Algebra Appl. 14 (2015), doi: 10.1142/S0219498815500991, 23 pages.
[21] S. Visweswaran, When does the complement of the zero-divisor graph of a commutative ring admit a cut
vertex?, Palestine J. Math. 1(2) (2012), 138-147.