On transitive soft sets over semihypergroups

Document Type : Research Paper

Authors

Vali-e-Asr University

Abstract

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by SH and  TH, respectively. It is shown that TH=SH if and only if β=β. We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

Keywords


[1] P. Corsini,  {it Prolegomena of Hypergroup Theory}, Aviani Editore, Tricesimo, 1993.

[2] P. Corsini, and  V. Leoreanu, {it Applications of Hyperstructure Theory}, Kluwer Academical Publications, Dordrecht, 2003.
[3] B. Davvaz, V. Leoreanu-Fotea, {it Hyperring Theory and Applications}, International Academic Press, USA, 2007.
[4] F. Feng, Y.M. Li, V. Leoreanu-Fotea,  Application of level soft sets in
decision making based on interval-valued fuzzy soft sets, Computers and
Mathematics with Applications 60 (2010) 1756-1767.

[5]  F. Feng, Y.B. Jun, X.Y. Liu, L.F. Li,  An adjustable approach to fuzzy
soft set based decision making, Journal of Computational and Applied
Mathematics 234 (2010) 10-20.
[6] F. Feng, X.Y. Liu, V. Leoreanu-Fotea, Y.B. Jun,  Soft sets and soft rough
sets, Information Sciences 181 (2011) 1125-1137.
[7]  F. Feng, Y.M. Li, N. Cagman,  Generalized uni-int decision making
schemes based on choice value soft sets, European Journal of Operational
Research 220 (2012) 162-170.
[8]  D. Freni, {it Une note sur le cÂœur d'un hypergroupe et sur la cl^{o}ture transitive
betaspast de beta. (French) [A note on the core of a
hypergroup and the transitive closure betaspast of
beta]}, Riv. Mat. Pura Appl., 8 (1991) 153-156.

[9]  M. Koskas, Groupes et hypergroupes homomorphes a un
demi-hypergroupe, C. R. Acad Sc., Paris, 257 (1963), 334-337.
bibitem{4}
[10] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision
making problem, Computers and Mathematics with Applications 44 (2002) 1077-
1083.

[11]  F. Marty, {it Sur une Generalization de la Notion de Groupe}, 8th Congress
Math. Scandenaves, Stockholm, Sweden, (1934) 45-49.
[12]  D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999) 19–31.
[13]T. Vougiouklis, {it Hyperstructures and Their Representations}, Hadronic
Press, Palm Harbor, FL, 1994.