Uniformly classical quasi-primary submodules

Document Type : Research Paper

Author

University of Qom

Abstract

In this paper we introduce the notions of uniformly quasi-primary ideals and uniformly classical quasi-primary submodules that generalize the concepts of uniformly primary ideals and uniformly classical primary submodules; respectively. Several characterizations of classical quasi-primary and uniformly classical quasi-primary submodules are given.
Then we investigate for a ring $R$, when any finite intersection of (uniformly) primary submodules of any $R$-module is a (uniformly) classical quasi-primary submodule. Furthermore, the behavior of classical quasi-primary and uniformly classical quasi-primary submodules under localizations are studied. Also, we investigate the existence of (minimal) primary submodules containing classical quasi-primary submodules.

Keywords


 
[1] R. E. Atani and S. E. Atani, A note on uniformly primary submodules, Novi SAD J. Math. 38 (2) (2008) 83-89.
[2] S. E. Atani and A. Y. Darani, On quasi-primary submodules, Chiang Mai J. Science 33 (3) (2006) 249-254.
[3] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.
[4] A. Azizi, On prime and weakly prime submodules, Vietnam J. Math. 36 (3) (2008) 315-325.
[5] M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (3) (2009) 351-362.
[6] M. Baziar, M. Behboodi and H. Sharif, Uniformly classical primary submodules, Comm. Algebra 40 (2012) 3192-3201.
[7] M. Behboodi, R. Jahani-Nezhad, and M. H. Naderi, Classical quasi-primary submodules, Bull. Iranian Math. Soc.37 (4) (2011) 51-71.
[8] M. Behboodi, R. Jahani-Nezhad, and M. H. Naderi, Quasi-primary decomposition in modules over Prufer domains, Journal of Algebraic Systems 1 (2) (2013) 149-160.
[9] J. A. Cox and A. J. Hetzel, Uniformly primary ideals, J. Pure Appl. Algebra 212 (1) (2008) 1-8.
[10] L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged) 11 (1947) 174-183.
[11] L. Fuchs and E. Mosteig, Ideal theory in Prufer domains, J. Algebra 252 (2002) 411-430.
[12] R. Y. Sharp, Steps in commutative algebra, London Math. Soc. Cambridge University Press, Cambridge, 1990.