SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Document Type : Research Paper

Authors

University of Kashan

Abstract

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,\cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacian
matrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=\sum_{i=1}^{n}q_i^{k}$, $k\geqslant 0$, where $q_1$,$q_2$, $\cdots$, $q_n$ are the eigenvalues of the signless Laplacian matrix of $G$.
 In this paper we first compute  the $k-$th signless Laplacian  spectral moments of a graph for small $k$  and then we order some graphs with respect to the signless Laplacian  spectral moments.

Keywords


[1] N. Biggs, Algebric Graph Theory, Cambridge University Press, Cambridge, 1993.
[2] D. Cvetkovi´c, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
[3] D. Cvetkovi´c, M. Petri´c, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37-49.
[4] D. Cvetkovi´c, P. Rowlinson, S. K. Simi´c, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
[5] D. Cvetkovi´c, P. Rowlinson, Spectra of unicyclic graphs, Graphs Combin. 3 (1987) 7-23.
[6] G. H. Fath-Tabar, A. R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math Commun. 15 (2010) 443-451.
[7] G. H. Fath-Tabar, A. R. Ashrafi, New upper bounds for Estrada index of bipartite graphs, Linear Algebra Appl. 435 (2011) 26072611.
[8] G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman, Note on Estrada and L−Estrada indices of graphs, Bulletin del AcademieSerbe des Sciences et des Arts. 139 (2009) 1-16.
[9] R. Gera, P. St˘anic˘a, The spectrum of generalized Petersen graphs, Australas. J. Combin. 49 (2011) 39-45.
[10] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. Total −electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[11] F. Taghvaee, A. R. Ashrafi, Comparing Fullerenes by Spectral Moments, Adv. Carbon 1 (2014) 1-4.
[12] F. Taghvaee, A. R. Ashrafi, Computing Spectrum of I−Graphs and its Ordering with Respect to Spectral Moments, submitted.
[13] F. Taghvaee, A. R. Ashrafi, Ordering some regular graphs with respect to spectral moments, submitted.
[14] Y. Wu, H. Liu, Lexicographical ordering by spectral moments of trees with a prescribed diameter, Linear Algebra Appl. 433 (2010) 1707-1713.