[1] P. Aglian´o, I. M. A. Ferreirim, F. Montagna, Basic hoops: an algebraic study of continuous t-norm, draft, (2000).
[2] B. Bosbach, Komplement¨are Halbgruppen. Axiomatik und Arithmetik, Fundamenta Mathematicae, Vol. 64 (1969),
257-287.
[3] B. Bosbach, Komplement¨are Halbgruppen. Kongruenzen and Quotienten, Fundamenta Mathematicae, Vol. 69
(1970), 1-14.
[4] M. Botur, A. Dvureˇcenskij, T. Kowalski, On normal-valued basic pseudo-hoop, Soft Comput, Vol. 16, (2012), 635-
644.
[5] N. Bourbaki, Topologie G´en´erale, Springer Berlin Heidelberg, (2007).
[6] J. R. B¨uchi, T. M. Owens, Complemented monoids and hoops, unpublished manuscript, (1975).
[7] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of Multiple-Valued logic and Soft Computing, Vol.
11. No 1-2, (2005), 153-184.
[8] P. H´ajek, Metamathematics of fuzzy logic, Springer, Vol. 4. (1998).
[9] K. D. Joshi, Introduction to general topology, New Age International Publisher, India, (1983).
[10] Y. B. Jun, H. S. Kim, Uniform structures in positive implication algebras, Intern. Math. J. Vol. 2, No 2, (2002),
215-219.
[11] Y. B. Jun, E. H. Roh, On uniformities of BCK-algebras, Commun. Korean Math. Soc. Vol. 10, No 1, (1995), 11-14.
[12] M. Kondo, Some types of filters in hoops, Multiple-Valued Logic (ISMVL), (2011), 41st IEEE International Symposium
on. IEEE, 50-53.
[13] J. R. Munkres, Topology a first course, Prentice-Hall, (1975).
[14] B. T. Sims, Fundamentals of Topology, Macmillan Publishing Co., Inc., New York, (1976).
[15] D. S. Yoon, H. S. Kim, Uniform structures in BCI-algebras, Commun. Korean Math. Soc. Vol. 17, No 3, (2002),
403-408.